|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
from datasets import load_dataset |
|
|
|
|
|
def main(): |
|
device = ("cuda" if torch.cuda.is_available() else "cpu") |
|
tokenizer = AutoTokenizer.from_pretrained('vblagoje/retribert-base-uncased') |
|
model = AutoModel.from_pretrained('vblagoje/retribert-base-uncased').to(device) |
|
_ = model.eval() |
|
|
|
index_file_name = "./data/kilt_wikipedia.faiss" |
|
kilt_wikipedia = load_dataset("kilt_wikipedia", split="full") |
|
columns = ['kilt_id', 'wikipedia_id', 'wikipedia_title', 'text', 'anchors', 'categories', |
|
'wikidata_info', 'history'] |
|
|
|
min_snippet_length = 20 |
|
topk = 21 |
|
|
|
def articles_to_paragraphs(examples): |
|
ids, titles, sections, texts, start_ps, end_ps, start_cs, end_cs = [], [], [], [], [], [], [], [] |
|
for bidx, example in enumerate(examples["text"]): |
|
last_section = "" |
|
for idx, p in enumerate(example["paragraph"]): |
|
if "Section::::" in p: |
|
last_section = p |
|
ids.append(examples["wikipedia_id"][bidx]) |
|
titles.append(examples["wikipedia_title"][bidx]) |
|
sections.append(last_section) |
|
texts.append(p) |
|
start_ps.append(idx) |
|
end_ps.append(idx) |
|
start_cs.append(0) |
|
end_cs.append(len(p)) |
|
|
|
return {"wikipedia_id": ids, "title": titles, |
|
"section": sections, "text": texts, |
|
"start_paragraph_id": start_ps, "end_paragraph_id": end_ps, |
|
"start_character": start_cs, |
|
"end_character": end_cs |
|
} |
|
|
|
kilt_wikipedia_paragraphs = kilt_wikipedia.map(articles_to_paragraphs, batched=True, |
|
remove_columns=columns, |
|
batch_size=256, cache_file_name=f"./wiki_kilt_paragraphs_full.arrow", |
|
desc="Expanding wiki articles into paragraphs") |
|
|
|
|
|
kilt_wikipedia_paragraphs = kilt_wikipedia_paragraphs.filter(lambda x: x["end_character"] > 250) |
|
kilt_wikipedia_paragraphs.load_faiss_index("embeddings", index_file_name, device=0) |
|
|
|
def embed_questions_for_retrieval(questions): |
|
query = tokenizer(questions, max_length=128, padding=True, truncation=True, return_tensors="pt") |
|
with torch.no_grad(): |
|
q_reps = model.embed_questions(query["input_ids"].to(device), |
|
query["attention_mask"].to(device)).cpu().type(torch.float) |
|
return q_reps.numpy() |
|
|
|
def query_index(question): |
|
question_embedding = embed_questions_for_retrieval([question]) |
|
scores, wiki_passages = kilt_wikipedia_paragraphs.get_nearest_examples("embeddings", question_embedding, k=topk) |
|
columns = ['wikipedia_id', 'title', 'text', 'section', 'start_paragraph_id', 'end_paragraph_id', 'start_character','end_character'] |
|
retrieved_examples = [] |
|
r = list(zip(wiki_passages[k] for k in columns)) |
|
for i in range(topk): |
|
retrieved_examples.append({k: v for k, v in zip(columns, [r[j][0][i] for j in range(len(columns))])}) |
|
return retrieved_examples |
|
|
|
questions = ["What causes the contrails (cirrus aviaticus) behind jets at high altitude? ", |
|
"Why does water heated to a room temeperature feel colder than the air around it?"] |
|
res_list = query_index(questions[0]) |
|
res_list = [res for res in res_list if len(res["text"].split()) > min_snippet_length][:int(topk / 3)] |
|
for res in res_list: |
|
print("\n") |
|
print(res) |
|
|
|
|
|
main() |
|
|
|
|
|
|