theachyuttiwari commited on
Commit
317b701
·
1 Parent(s): 9b0c357

Upload query_smoke_test.py

Browse files
Files changed (1) hide show
  1. query_smoke_test.py +81 -0
query_smoke_test.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModel
3
+
4
+ from datasets import load_dataset
5
+
6
+
7
+ def main():
8
+ device = ("cuda" if torch.cuda.is_available() else "cpu")
9
+ tokenizer = AutoTokenizer.from_pretrained('vblagoje/retribert-base-uncased')
10
+ model = AutoModel.from_pretrained('vblagoje/retribert-base-uncased').to(device)
11
+ _ = model.eval()
12
+
13
+ index_file_name = "./data/kilt_wikipedia.faiss"
14
+ kilt_wikipedia = load_dataset("kilt_wikipedia", split="full")
15
+ columns = ['kilt_id', 'wikipedia_id', 'wikipedia_title', 'text', 'anchors', 'categories',
16
+ 'wikidata_info', 'history']
17
+
18
+ min_snippet_length = 20
19
+ topk = 21
20
+
21
+ def articles_to_paragraphs(examples):
22
+ ids, titles, sections, texts, start_ps, end_ps, start_cs, end_cs = [], [], [], [], [], [], [], []
23
+ for bidx, example in enumerate(examples["text"]):
24
+ last_section = ""
25
+ for idx, p in enumerate(example["paragraph"]):
26
+ if "Section::::" in p:
27
+ last_section = p
28
+ ids.append(examples["wikipedia_id"][bidx])
29
+ titles.append(examples["wikipedia_title"][bidx])
30
+ sections.append(last_section)
31
+ texts.append(p)
32
+ start_ps.append(idx)
33
+ end_ps.append(idx)
34
+ start_cs.append(0)
35
+ end_cs.append(len(p))
36
+
37
+ return {"wikipedia_id": ids, "title": titles,
38
+ "section": sections, "text": texts,
39
+ "start_paragraph_id": start_ps, "end_paragraph_id": end_ps,
40
+ "start_character": start_cs,
41
+ "end_character": end_cs
42
+ }
43
+
44
+ kilt_wikipedia_paragraphs = kilt_wikipedia.map(articles_to_paragraphs, batched=True,
45
+ remove_columns=columns,
46
+ batch_size=256, cache_file_name=f"./wiki_kilt_paragraphs_full.arrow",
47
+ desc="Expanding wiki articles into paragraphs")
48
+
49
+ # use paragraphs that are not simple fragments or very short sentences
50
+ kilt_wikipedia_paragraphs = kilt_wikipedia_paragraphs.filter(lambda x: x["end_character"] > 250)
51
+ kilt_wikipedia_paragraphs.load_faiss_index("embeddings", index_file_name, device=0)
52
+
53
+ def embed_questions_for_retrieval(questions):
54
+ query = tokenizer(questions, max_length=128, padding=True, truncation=True, return_tensors="pt")
55
+ with torch.no_grad():
56
+ q_reps = model.embed_questions(query["input_ids"].to(device),
57
+ query["attention_mask"].to(device)).cpu().type(torch.float)
58
+ return q_reps.numpy()
59
+
60
+ def query_index(question):
61
+ question_embedding = embed_questions_for_retrieval([question])
62
+ scores, wiki_passages = kilt_wikipedia_paragraphs.get_nearest_examples("embeddings", question_embedding, k=topk)
63
+ columns = ['wikipedia_id', 'title', 'text', 'section', 'start_paragraph_id', 'end_paragraph_id', 'start_character','end_character']
64
+ retrieved_examples = []
65
+ r = list(zip(wiki_passages[k] for k in columns))
66
+ for i in range(topk):
67
+ retrieved_examples.append({k: v for k, v in zip(columns, [r[j][0][i] for j in range(len(columns))])})
68
+ return retrieved_examples
69
+
70
+ questions = ["What causes the contrails (cirrus aviaticus) behind jets at high altitude? ",
71
+ "Why does water heated to a room temeperature feel colder than the air around it?"]
72
+ res_list = query_index(questions[0])
73
+ res_list = [res for res in res_list if len(res["text"].split()) > min_snippet_length][:int(topk / 3)]
74
+ for res in res_list:
75
+ print("\n")
76
+ print(res)
77
+
78
+
79
+ main()
80
+
81
+