|
import argparse |
|
import logging |
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Any, Union, Optional |
|
|
|
import torch |
|
import ujson |
|
from accelerate import Accelerator |
|
from accelerate.utils import set_seed |
|
from torch import nn, Tensor |
|
from torch.nn import functional as F |
|
from torch.utils.data import Dataset, RandomSampler, DataLoader, SequentialSampler |
|
from tqdm.auto import tqdm |
|
from transformers import get_scheduler, AutoTokenizer, AutoModel, AdamW, SchedulerType, PreTrainedTokenizerBase, AutoModelForSequenceClassification, BatchEncoding |
|
from transformers.file_utils import PaddingStrategy |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def get_parser(): |
|
parser = argparse.ArgumentParser(description="Train LFQA retriever") |
|
parser.add_argument( |
|
"--dpr_input_file", |
|
type=str, |
|
help="DPR formatted input file with question/positive/negative pairs in a JSONL file", |
|
) |
|
|
|
parser.add_argument( |
|
"--per_device_train_batch_size", |
|
type=int, |
|
default=32, |
|
) |
|
|
|
parser.add_argument( |
|
"--per_device_eval_batch_size", |
|
type=int, |
|
default=32, |
|
help="Batch size (per device) for the evaluation dataloader.", |
|
) |
|
|
|
parser.add_argument( |
|
"--max_length", |
|
type=int, |
|
default=128, |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--pretrained_model_name", |
|
type=str, |
|
default="sentence-transformers/all-MiniLM-L6-v2", |
|
) |
|
|
|
parser.add_argument( |
|
"--ce_model_name", |
|
type=str, |
|
default="cross-encoder/ms-marco-MiniLM-L-6-v2", |
|
) |
|
|
|
parser.add_argument( |
|
"--model_save_name", |
|
type=str, |
|
default="eli5_retriever_model_l-12_h-768_b-512-512", |
|
) |
|
|
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=2e-5, |
|
) |
|
|
|
parser.add_argument( |
|
"--weight_decay", |
|
type=float, |
|
default=0.01, |
|
) |
|
|
|
parser.add_argument( |
|
"--log_freq", |
|
type=int, |
|
default=500, |
|
help="Log train/validation loss every log_freq update steps" |
|
) |
|
|
|
parser.add_argument( |
|
"--num_train_epochs", |
|
type=int, |
|
default=4, |
|
) |
|
|
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
|
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
|
|
parser.add_argument( |
|
"--lr_scheduler_type", |
|
type=SchedulerType, |
|
default="linear", |
|
help="The scheduler type to use.", |
|
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], |
|
) |
|
|
|
parser.add_argument( |
|
"--num_warmup_steps", |
|
type=int, |
|
default=100, |
|
help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
|
|
parser.add_argument( |
|
"--warmup_percentage", |
|
type=float, |
|
default=0.08, |
|
help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
return parser |
|
|
|
|
|
@dataclass |
|
class InputExample: |
|
guid: str = "" |
|
texts: List[str] = None |
|
label: Union[int, float] = 0 |
|
|
|
|
|
class DPRDataset(Dataset): |
|
""" |
|
Dataset DPR format of question, answers, positive, negative, and hard negative passages |
|
See https://github.com/facebookresearch/DPR#retriever-input-data-format for more details |
|
""" |
|
|
|
def __init__(self, file_path: str, include_all_positive: bool = False) -> None: |
|
super().__init__() |
|
with open(file_path, "r") as fp: |
|
self.data = [] |
|
|
|
def dpr_example_to_input_example(idx, dpr_item): |
|
examples = [] |
|
for p_idx, p_item in enumerate(dpr_item["positive_ctxs"]): |
|
for n_idx, n_item in enumerate(dpr_item["negative_ctxs"]): |
|
examples.append(InputExample(guid=[idx, p_idx, n_idx], texts=[dpr_item["question"], |
|
p_item["text"], |
|
n_item["text"]])) |
|
if not include_all_positive: |
|
break |
|
return examples |
|
|
|
for idx, line in enumerate(fp): |
|
self.data.extend(dpr_example_to_input_example(idx, ujson.loads(line))) |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, index): |
|
return self.data[index] |
|
|
|
|
|
def dpr_collate_fn(batch): |
|
query_id, pos_id, neg_id = zip(*[example.guid for example in batch]) |
|
query, pos, neg = zip(*[example.texts for example in batch]) |
|
return (query_id, pos_id, neg_id), (query, pos, neg) |
|
|
|
|
|
|
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) |
|
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
return sum_embeddings / sum_mask |
|
|
|
|
|
@dataclass |
|
class CrossEncoderCollator: |
|
tokenizer: PreTrainedTokenizerBase |
|
model: Any |
|
target_tokenizer: PreTrainedTokenizerBase |
|
padding: Union[bool, str, PaddingStrategy] = True |
|
max_length: Optional[int] = None |
|
pad_to_multiple_of: Optional[int] = None |
|
return_tensors: str = "pt" |
|
|
|
def __call__(self, batch): |
|
query_id, pos_id, neg_id = zip(*[example.guid for example in batch]) |
|
query, pos_passage, neg_passage = zip(*[example.texts for example in batch]) |
|
batch_input: List[List[str]] = list(zip(query, pos_passage)) + list(zip(query, neg_passage)) |
|
features = self.tokenizer(batch_input, padding=self.padding, truncation=True, |
|
return_tensors=self.return_tensors) |
|
with torch.no_grad(): |
|
scores = self.model(**features).logits |
|
|
|
labels = scores[:len(query)] - scores[len(query):] |
|
batch_input: List[str] = list(query) + list(pos_passage) + list(neg_passage) |
|
|
|
encoded_input = self.target_tokenizer(batch_input, padding=True, truncation=True, |
|
max_length=256, return_tensors='pt') |
|
|
|
encoded_input["labels"] = labels |
|
|
|
return encoded_input |
|
|
|
|
|
class RetrievalQAEmbedder(torch.nn.Module): |
|
def __init__(self, sent_encoder, sent_tokenizer, batch_size:int = 32): |
|
super(RetrievalQAEmbedder, self).__init__() |
|
dim = sent_encoder.config.hidden_size |
|
self.model = sent_encoder |
|
self.tokenizer = sent_tokenizer |
|
self.scale = 1 |
|
self.similarity_fct = 'dot' |
|
self.batch_size = 32 |
|
self.loss_fct = nn.MSELoss() |
|
|
|
def forward(self, examples: BatchEncoding): |
|
|
|
labels = examples.pop("labels") |
|
|
|
model_output = self.model(**examples) |
|
|
|
examples["labels"] = labels |
|
|
|
|
|
sentence_embeddings = mean_pooling(model_output, examples['attention_mask']) |
|
target_shape = (3, self.batch_size, sentence_embeddings.shape[-1]) |
|
sentence_embeddings_reshaped = torch.reshape(sentence_embeddings, target_shape) |
|
|
|
|
|
|
|
embeddings_query = sentence_embeddings_reshaped[0] |
|
embeddings_pos = sentence_embeddings_reshaped[1] |
|
embeddings_neg = sentence_embeddings_reshaped[2] |
|
|
|
if self.similarity_fct == 'cosine': |
|
embeddings_query = F.normalize(embeddings_query, p=2, dim=1) |
|
embeddings_pos = F.normalize(embeddings_pos, p=2, dim=1) |
|
embeddings_neg = F.normalize(embeddings_neg, p=2, dim=1) |
|
|
|
scores_pos = (embeddings_query * embeddings_pos).sum(dim=-1) * self.scale |
|
scores_neg = (embeddings_query * embeddings_neg).sum(dim=-1) * self.scale |
|
margin_pred = scores_pos - scores_neg |
|
|
|
return self.loss_fct(margin_pred, labels.squeeze()) |
|
|
|
|
|
def evaluate_qa_retriever(model, data_loader): |
|
|
|
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True) |
|
tot_loss = 0.0 |
|
with torch.no_grad(): |
|
for step, batch in enumerate(epoch_iterator): |
|
q_ids, q_mask, a_ids, a_mask = batch |
|
loss = model(q_ids, q_mask, a_ids, a_mask) |
|
tot_loss += loss.item() |
|
return tot_loss / (step + 1) |
|
|
|
|
|
def train(config): |
|
set_seed(42) |
|
args = config["args"] |
|
|
|
|
|
accelerator = Accelerator() |
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) |
|
logger.info(accelerator.state) |
|
|
|
|
|
train_dataset = DPRDataset(file_path=args.dpr_input_file) |
|
valid_dataset = Dataset() |
|
|
|
base_tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name) |
|
base_model = AutoModel.from_pretrained(args.pretrained_model_name) |
|
|
|
ce_tokenizer = AutoTokenizer.from_pretrained(args.ce_model_name) |
|
ce_model = AutoModelForSequenceClassification.from_pretrained(args.ce_model_name) |
|
_ = ce_model.eval() |
|
|
|
model = RetrievalQAEmbedder(base_model, base_tokenizer) |
|
no_decay = ['bias', 'LayerNorm.weight'] |
|
optimizer_grouped_parameters = [ |
|
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
'weight_decay': args.weight_decay}, |
|
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} |
|
] |
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate) |
|
|
|
cec = CrossEncoderCollator(model=ce_model, tokenizer=ce_tokenizer, target_tokenizer=base_tokenizer) |
|
train_dataloader = DataLoader(train_dataset, batch_size=args.per_device_train_batch_size, |
|
sampler=RandomSampler(train_dataset), collate_fn=cec) |
|
|
|
eval_dataloader = DataLoader(valid_dataset, batch_size=args.per_device_eval_batch_size, |
|
sampler=SequentialSampler(valid_dataset), collate_fn=cec) |
|
|
|
|
|
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(model, optimizer, |
|
train_dataloader, eval_dataloader) |
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
else: |
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
num_warmup_steps = args.num_warmup_steps if args.num_warmup_steps else math.ceil(args.max_train_steps * |
|
args.warmup_percentage) |
|
scheduler = get_scheduler( |
|
name=args.lr_scheduler_type, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.num_warmup_steps, |
|
num_training_steps=args.max_train_steps, |
|
) |
|
|
|
|
|
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
logger.info(f" Warmup steps = {num_warmup_steps}") |
|
logger.info(f" Logging training progress every {args.log_freq} optimization steps") |
|
|
|
loc_loss = 0.0 |
|
current_loss = 0.0 |
|
checkpoint_step = 0 |
|
|
|
completed_steps = checkpoint_step |
|
progress_bar = tqdm(range(args.max_train_steps), initial=checkpoint_step, |
|
disable=not accelerator.is_local_main_process) |
|
for epoch in range(args.num_train_epochs): |
|
model.train() |
|
for step, batch in enumerate(train_dataloader, start=checkpoint_step): |
|
|
|
pre_loss = model(batch) |
|
loss = pre_loss / args.gradient_accumulation_steps |
|
accelerator.backward(loss) |
|
loc_loss += loss.item() |
|
if ((step + 1) % args.gradient_accumulation_steps == 0) or (step + 1 == len(train_dataloader)): |
|
current_loss = loc_loss |
|
optimizer.step() |
|
scheduler.step() |
|
optimizer.zero_grad() |
|
progress_bar.update(1) |
|
progress_bar.set_postfix(loss=loc_loss) |
|
loc_loss = 0 |
|
completed_steps += 1 |
|
|
|
if step % (args.log_freq * args.gradient_accumulation_steps) == 0: |
|
|
|
|
|
|
|
eval_loss = 0 |
|
logger.info(f"Train loss {current_loss} , eval loss {eval_loss}") |
|
if args.wandb and accelerator.is_local_main_process: |
|
import wandb |
|
wandb.log({"loss": current_loss, "eval_loss": eval_loss, "step": completed_steps}) |
|
|
|
if completed_steps >= args.max_train_steps: |
|
break |
|
|
|
logger.info("Saving model {}".format(args.model_save_name)) |
|
accelerator.wait_for_everyone() |
|
unwrapped_model = accelerator.unwrap_model(model) |
|
accelerator.save(unwrapped_model.state_dict(), "{}_{}.bin".format(args.model_save_name, epoch)) |
|
eval_loss = evaluate_qa_retriever(unwrapped_model, eval_dataloader) |
|
logger.info("Evaluation loss epoch {:4d}: {:.3f}".format(epoch, eval_loss)) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = get_parser() |
|
parser.add_argument( |
|
"--wandb", |
|
action="store_true", |
|
help="Whether to use W&B logging", |
|
) |
|
main_args, _ = parser.parse_known_args() |
|
config = {"args": main_args} |
|
if main_args.wandb: |
|
import wandb |
|
|
|
wandb.init(project="Retriever") |
|
|
|
train(config=config) |
|
|
|
|