|
import argparse |
|
import json |
|
|
|
import torch |
|
from datasets import load_dataset |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
from transformers import DPRQuestionEncoder |
|
|
|
from common import embed_questions, clean_question, articles_to_paragraphs, kilt_wikipedia_columns |
|
from common import kilt_wikipedia_paragraph_columns as columns |
|
|
|
|
|
def generate_dpr_training_file(args): |
|
n_negatives = 7 |
|
min_chars_per_passage = 200 |
|
|
|
def query_index(question, topk=(n_negatives * args.n_positives) * 2): |
|
question_embedding = embed_questions(question_model, question_tokenizer, [question]) |
|
scores, wiki_passages = kilt_wikipedia_paragraphs.get_nearest_examples("embeddings", question_embedding, k=topk) |
|
|
|
retrieved_examples = [] |
|
r = list(zip(wiki_passages[k] for k in columns)) |
|
for i in range(topk): |
|
retrieved_examples.append({k: v for k, v in zip(columns, [r[j][0][i] for j in range(len(columns))])}) |
|
|
|
return retrieved_examples |
|
|
|
def find_positive_and_hard_negative_ctxs(dataset_index: int, n_positive=1, device="cuda:0"): |
|
positive_context_list = [] |
|
hard_negative_context_list = [] |
|
example = dataset[dataset_index] |
|
question = clean_question(example['title']) |
|
passages = query_index(question) |
|
passages = [dict([(k, p[k]) for k in columns]) for p in passages] |
|
q_passage_pairs = [[question, f"{p['title']} {p['text']}" if args.use_title else p["text"]] for p in passages] |
|
|
|
features = ce_tokenizer(q_passage_pairs, padding="max_length", max_length=256, truncation=True, |
|
return_tensors="pt") |
|
with torch.no_grad(): |
|
passage_scores = ce_model(features["input_ids"].to(device), |
|
features["attention_mask"].to(device)).logits |
|
|
|
for p_idx, p in enumerate(passages): |
|
p["score"] = passage_scores[p_idx].item() |
|
|
|
|
|
def score_passage(item): |
|
return item["score"] |
|
|
|
|
|
best_passage_list = sorted(passages, key=score_passage, reverse=True) |
|
for idx, item in enumerate(best_passage_list): |
|
if idx < n_positive: |
|
positive_context_list.append({"title": item["title"], "text": item["text"]}) |
|
else: |
|
break |
|
|
|
|
|
worst_passage_list = sorted(passages, key=score_passage, reverse=False) |
|
for idx, hard_negative in enumerate(worst_passage_list): |
|
if idx < n_negatives * n_positive: |
|
hard_negative_context_list.append({"title": hard_negative["title"], "text": hard_negative["text"]}) |
|
else: |
|
break |
|
assert len(positive_context_list) * n_negatives == len(hard_negative_context_list) |
|
return positive_context_list, hard_negative_context_list |
|
|
|
device = ("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
question_model = DPRQuestionEncoder.from_pretrained(args.question_encoder_name).to(device) |
|
question_tokenizer = AutoTokenizer.from_pretrained(args.question_encoder_name) |
|
_ = question_model.eval() |
|
|
|
ce_model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-MiniLM-L-4-v2').to(device) |
|
ce_tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-MiniLM-L-4-v2') |
|
_ = ce_model.eval() |
|
|
|
kilt_wikipedia = load_dataset("kilt_wikipedia", split="full") |
|
|
|
kilt_wikipedia_paragraphs = kilt_wikipedia.map(articles_to_paragraphs, batched=True, |
|
remove_columns=kilt_wikipedia_columns, |
|
batch_size=512, |
|
cache_file_name=f"../data/wiki_kilt_paragraphs_full.arrow", |
|
desc="Expanding wiki articles into paragraphs") |
|
|
|
|
|
|
|
kilt_wikipedia_paragraphs = kilt_wikipedia_paragraphs.filter( |
|
lambda x: (x["end_character"] - x["start_character"]) > min_chars_per_passage) |
|
|
|
kilt_wikipedia_paragraphs.load_faiss_index("embeddings", args.index_file_name, device=0) |
|
|
|
eli5_train_set = load_dataset("vblagoje/lfqa", split="train") |
|
eli5_validation_set = load_dataset("vblagoje/lfqa", split="validation") |
|
eli5_test_set = load_dataset("vblagoje/lfqa", split="test") |
|
|
|
for dataset_name, dataset in zip(["train", "validation", "test"], [eli5_train_set, |
|
eli5_validation_set, |
|
eli5_test_set]): |
|
|
|
progress_bar = tqdm(range(len(dataset)), desc=f"Creating DPR formatted {dataset_name} file") |
|
with open('eli5-dpr-' + dataset_name + '.jsonl', 'w') as fp: |
|
for idx, example in enumerate(dataset): |
|
negative_start_idx = 0 |
|
positive_context, hard_negative_ctxs = find_positive_and_hard_negative_ctxs(idx, args.n_positives, |
|
device) |
|
for pc in positive_context: |
|
hnc = hard_negative_ctxs[negative_start_idx:negative_start_idx + n_negatives] |
|
json.dump({"id": example["q_id"], |
|
"question": clean_question(example["title"]), |
|
"positive_ctxs": [pc], |
|
"hard_negative_ctxs": hnc}, fp) |
|
fp.write("\n") |
|
negative_start_idx += n_negatives |
|
progress_bar.update(1) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Creates DPR training file") |
|
parser.add_argument( |
|
"--use_title", |
|
action="store_true", |
|
help="If true, use title in addition to passage text for passage embedding", |
|
) |
|
parser.add_argument( |
|
"--n_positives", |
|
default=3, |
|
help="Number of positive samples per question", |
|
) |
|
parser.add_argument( |
|
"--question_encoder_name", |
|
default="vblagoje/dpr-question_encoder-single-lfqa-base", |
|
help="Question encoder to use", |
|
) |
|
|
|
parser.add_argument( |
|
"--index_file_name", |
|
default="../data/kilt_dpr_wikipedia_first.faiss", |
|
help="Faiss index with passage embeddings", |
|
) |
|
|
|
main_args, _ = parser.parse_known_args() |
|
generate_dpr_training_file(main_args) |
|
|