theachyuttiwari
commited on
Commit
·
53a7a2f
1
Parent(s):
3a1ca92
Upload create_dpr_training_from_faiss.py
Browse files
create_dpr_training_from_faiss.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from datasets import load_dataset
|
6 |
+
from tqdm.auto import tqdm
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
+
from transformers import DPRQuestionEncoder
|
9 |
+
|
10 |
+
from common import embed_questions, clean_question, articles_to_paragraphs, kilt_wikipedia_columns
|
11 |
+
from common import kilt_wikipedia_paragraph_columns as columns
|
12 |
+
|
13 |
+
|
14 |
+
def generate_dpr_training_file(args):
|
15 |
+
n_negatives = 7
|
16 |
+
min_chars_per_passage = 200
|
17 |
+
|
18 |
+
def query_index(question, topk=(n_negatives * args.n_positives) * 2):
|
19 |
+
question_embedding = embed_questions(question_model, question_tokenizer, [question])
|
20 |
+
scores, wiki_passages = kilt_wikipedia_paragraphs.get_nearest_examples("embeddings", question_embedding, k=topk)
|
21 |
+
|
22 |
+
retrieved_examples = []
|
23 |
+
r = list(zip(wiki_passages[k] for k in columns))
|
24 |
+
for i in range(topk):
|
25 |
+
retrieved_examples.append({k: v for k, v in zip(columns, [r[j][0][i] for j in range(len(columns))])})
|
26 |
+
|
27 |
+
return retrieved_examples
|
28 |
+
|
29 |
+
def find_positive_and_hard_negative_ctxs(dataset_index: int, n_positive=1, device="cuda:0"):
|
30 |
+
positive_context_list = []
|
31 |
+
hard_negative_context_list = []
|
32 |
+
example = dataset[dataset_index]
|
33 |
+
question = clean_question(example['title'])
|
34 |
+
passages = query_index(question)
|
35 |
+
passages = [dict([(k, p[k]) for k in columns]) for p in passages]
|
36 |
+
q_passage_pairs = [[question, f"{p['title']} {p['text']}" if args.use_title else p["text"]] for p in passages]
|
37 |
+
|
38 |
+
features = ce_tokenizer(q_passage_pairs, padding="max_length", max_length=256, truncation=True,
|
39 |
+
return_tensors="pt")
|
40 |
+
with torch.no_grad():
|
41 |
+
passage_scores = ce_model(features["input_ids"].to(device),
|
42 |
+
features["attention_mask"].to(device)).logits
|
43 |
+
|
44 |
+
for p_idx, p in enumerate(passages):
|
45 |
+
p["score"] = passage_scores[p_idx].item()
|
46 |
+
|
47 |
+
# order by scores
|
48 |
+
def score_passage(item):
|
49 |
+
return item["score"]
|
50 |
+
|
51 |
+
# pick the most relevant as the positive answer
|
52 |
+
best_passage_list = sorted(passages, key=score_passage, reverse=True)
|
53 |
+
for idx, item in enumerate(best_passage_list):
|
54 |
+
if idx < n_positive:
|
55 |
+
positive_context_list.append({"title": item["title"], "text": item["text"]})
|
56 |
+
else:
|
57 |
+
break
|
58 |
+
|
59 |
+
# least relevant as hard_negative
|
60 |
+
worst_passage_list = sorted(passages, key=score_passage, reverse=False)
|
61 |
+
for idx, hard_negative in enumerate(worst_passage_list):
|
62 |
+
if idx < n_negatives * n_positive:
|
63 |
+
hard_negative_context_list.append({"title": hard_negative["title"], "text": hard_negative["text"]})
|
64 |
+
else:
|
65 |
+
break
|
66 |
+
assert len(positive_context_list) * n_negatives == len(hard_negative_context_list)
|
67 |
+
return positive_context_list, hard_negative_context_list
|
68 |
+
|
69 |
+
device = ("cuda" if torch.cuda.is_available() else "cpu")
|
70 |
+
|
71 |
+
question_model = DPRQuestionEncoder.from_pretrained(args.question_encoder_name).to(device)
|
72 |
+
question_tokenizer = AutoTokenizer.from_pretrained(args.question_encoder_name)
|
73 |
+
_ = question_model.eval()
|
74 |
+
|
75 |
+
ce_model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-MiniLM-L-4-v2').to(device)
|
76 |
+
ce_tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-MiniLM-L-4-v2')
|
77 |
+
_ = ce_model.eval()
|
78 |
+
|
79 |
+
kilt_wikipedia = load_dataset("kilt_wikipedia", split="full")
|
80 |
+
|
81 |
+
kilt_wikipedia_paragraphs = kilt_wikipedia.map(articles_to_paragraphs, batched=True,
|
82 |
+
remove_columns=kilt_wikipedia_columns,
|
83 |
+
batch_size=512,
|
84 |
+
cache_file_name=f"../data/wiki_kilt_paragraphs_full.arrow",
|
85 |
+
desc="Expanding wiki articles into paragraphs")
|
86 |
+
|
87 |
+
# use paragraphs that are not simple fragments or very short sentences
|
88 |
+
# Wikipedia Faiss index needs to fit into a 16 Gb GPU
|
89 |
+
kilt_wikipedia_paragraphs = kilt_wikipedia_paragraphs.filter(
|
90 |
+
lambda x: (x["end_character"] - x["start_character"]) > min_chars_per_passage)
|
91 |
+
|
92 |
+
kilt_wikipedia_paragraphs.load_faiss_index("embeddings", args.index_file_name, device=0)
|
93 |
+
|
94 |
+
eli5_train_set = load_dataset("vblagoje/lfqa", split="train")
|
95 |
+
eli5_validation_set = load_dataset("vblagoje/lfqa", split="validation")
|
96 |
+
eli5_test_set = load_dataset("vblagoje/lfqa", split="test")
|
97 |
+
|
98 |
+
for dataset_name, dataset in zip(["train", "validation", "test"], [eli5_train_set,
|
99 |
+
eli5_validation_set,
|
100 |
+
eli5_test_set]):
|
101 |
+
|
102 |
+
progress_bar = tqdm(range(len(dataset)), desc=f"Creating DPR formatted {dataset_name} file")
|
103 |
+
with open('eli5-dpr-' + dataset_name + '.jsonl', 'w') as fp:
|
104 |
+
for idx, example in enumerate(dataset):
|
105 |
+
negative_start_idx = 0
|
106 |
+
positive_context, hard_negative_ctxs = find_positive_and_hard_negative_ctxs(idx, args.n_positives,
|
107 |
+
device)
|
108 |
+
for pc in positive_context:
|
109 |
+
hnc = hard_negative_ctxs[negative_start_idx:negative_start_idx + n_negatives]
|
110 |
+
json.dump({"id": example["q_id"],
|
111 |
+
"question": clean_question(example["title"]),
|
112 |
+
"positive_ctxs": [pc],
|
113 |
+
"hard_negative_ctxs": hnc}, fp)
|
114 |
+
fp.write("\n")
|
115 |
+
negative_start_idx += n_negatives
|
116 |
+
progress_bar.update(1)
|
117 |
+
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
parser = argparse.ArgumentParser(description="Creates DPR training file")
|
121 |
+
parser.add_argument(
|
122 |
+
"--use_title",
|
123 |
+
action="store_true",
|
124 |
+
help="If true, use title in addition to passage text for passage embedding",
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--n_positives",
|
128 |
+
default=3,
|
129 |
+
help="Number of positive samples per question",
|
130 |
+
)
|
131 |
+
parser.add_argument(
|
132 |
+
"--question_encoder_name",
|
133 |
+
default="vblagoje/dpr-question_encoder-single-lfqa-base",
|
134 |
+
help="Question encoder to use",
|
135 |
+
)
|
136 |
+
|
137 |
+
parser.add_argument(
|
138 |
+
"--index_file_name",
|
139 |
+
default="../data/kilt_dpr_wikipedia_first.faiss",
|
140 |
+
help="Faiss index with passage embeddings",
|
141 |
+
)
|
142 |
+
|
143 |
+
main_args, _ = parser.parse_known_args()
|
144 |
+
generate_dpr_training_file(main_args)
|