|
--- |
|
license: mit |
|
base_model: xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: xlm-roberta-base-finetuned-panx-hi-ta |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-finetuned-panx-hi-ta |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4635 |
|
- F1: 0.8674 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 24 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 0.4856 | 1.0 | 372 | 0.2799 | 0.7713 | |
|
| 0.2483 | 2.0 | 744 | 0.2545 | 0.8067 | |
|
| 0.1844 | 3.0 | 1116 | 0.2355 | 0.8147 | |
|
| 0.1486 | 4.0 | 1488 | 0.2546 | 0.8136 | |
|
| 0.1373 | 5.0 | 1860 | 0.2560 | 0.8167 | |
|
| 0.0839 | 6.0 | 2232 | 0.2699 | 0.8232 | |
|
| 0.0658 | 7.0 | 2604 | 0.3030 | 0.8209 | |
|
| 0.05 | 8.0 | 2976 | 0.3625 | 0.8458 | |
|
| 0.0382 | 9.0 | 3348 | 0.3777 | 0.8445 | |
|
| 0.031 | 10.0 | 3720 | 0.3732 | 0.8514 | |
|
| 0.0246 | 11.0 | 4092 | 0.3994 | 0.8579 | |
|
| 0.0144 | 12.0 | 4464 | 0.4308 | 0.8507 | |
|
| 0.0137 | 13.0 | 4836 | 0.4203 | 0.8499 | |
|
| 0.0085 | 14.0 | 5208 | 0.4428 | 0.8613 | |
|
| 0.0067 | 15.0 | 5580 | 0.4589 | 0.8563 | |
|
| 0.0062 | 16.0 | 5952 | 0.4375 | 0.8609 | |
|
| 0.0047 | 17.0 | 6324 | 0.4448 | 0.8610 | |
|
| 0.0026 | 18.0 | 6696 | 0.4540 | 0.8624 | |
|
| 0.0017 | 19.0 | 7068 | 0.4645 | 0.8658 | |
|
| 0.0021 | 20.0 | 7440 | 0.4635 | 0.8674 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|