the-neural-networker's picture
Training completed!
b89b25d
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-hi-ta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-hi-ta
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4635
- F1: 0.8674
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4856 | 1.0 | 372 | 0.2799 | 0.7713 |
| 0.2483 | 2.0 | 744 | 0.2545 | 0.8067 |
| 0.1844 | 3.0 | 1116 | 0.2355 | 0.8147 |
| 0.1486 | 4.0 | 1488 | 0.2546 | 0.8136 |
| 0.1373 | 5.0 | 1860 | 0.2560 | 0.8167 |
| 0.0839 | 6.0 | 2232 | 0.2699 | 0.8232 |
| 0.0658 | 7.0 | 2604 | 0.3030 | 0.8209 |
| 0.05 | 8.0 | 2976 | 0.3625 | 0.8458 |
| 0.0382 | 9.0 | 3348 | 0.3777 | 0.8445 |
| 0.031 | 10.0 | 3720 | 0.3732 | 0.8514 |
| 0.0246 | 11.0 | 4092 | 0.3994 | 0.8579 |
| 0.0144 | 12.0 | 4464 | 0.4308 | 0.8507 |
| 0.0137 | 13.0 | 4836 | 0.4203 | 0.8499 |
| 0.0085 | 14.0 | 5208 | 0.4428 | 0.8613 |
| 0.0067 | 15.0 | 5580 | 0.4589 | 0.8563 |
| 0.0062 | 16.0 | 5952 | 0.4375 | 0.8609 |
| 0.0047 | 17.0 | 6324 | 0.4448 | 0.8610 |
| 0.0026 | 18.0 | 6696 | 0.4540 | 0.8624 |
| 0.0017 | 19.0 | 7068 | 0.4645 | 0.8658 |
| 0.0021 | 20.0 | 7440 | 0.4635 | 0.8674 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3