|
from typing import Any, Dict |
|
|
|
from lightning.pytorch.utilities import rank_zero_only |
|
from omegaconf import OmegaConf |
|
|
|
from matcha.utils import pylogger |
|
|
|
log = pylogger.get_pylogger(__name__) |
|
|
|
|
|
@rank_zero_only |
|
def log_hyperparameters(object_dict: Dict[str, Any]) -> None: |
|
"""Controls which config parts are saved by Lightning loggers. |
|
|
|
Additionally saves: |
|
- Number of model parameters |
|
|
|
:param object_dict: A dictionary containing the following objects: |
|
- `"cfg"`: A DictConfig object containing the main config. |
|
- `"model"`: The Lightning model. |
|
- `"trainer"`: The Lightning trainer. |
|
""" |
|
hparams = {} |
|
|
|
cfg = OmegaConf.to_container(object_dict["cfg"]) |
|
model = object_dict["model"] |
|
trainer = object_dict["trainer"] |
|
|
|
if not trainer.logger: |
|
log.warning("Logger not found! Skipping hyperparameter logging...") |
|
return |
|
|
|
hparams["model"] = cfg["model"] |
|
|
|
|
|
hparams["model/params/total"] = sum(p.numel() for p in model.parameters()) |
|
hparams["model/params/trainable"] = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
hparams["model/params/non_trainable"] = sum(p.numel() for p in model.parameters() if not p.requires_grad) |
|
|
|
hparams["data"] = cfg["data"] |
|
hparams["trainer"] = cfg["trainer"] |
|
|
|
hparams["callbacks"] = cfg.get("callbacks") |
|
hparams["extras"] = cfg.get("extras") |
|
|
|
hparams["task_name"] = cfg.get("task_name") |
|
hparams["tags"] = cfg.get("tags") |
|
hparams["ckpt_path"] = cfg.get("ckpt_path") |
|
hparams["seed"] = cfg.get("seed") |
|
|
|
|
|
for logger in trainer.loggers: |
|
logger.log_hyperparams(hparams) |
|
|