|
""" from https://github.com/keithito/tacotron |
|
|
|
Cleaners are transformations that run over the input text at both training and eval time. |
|
|
|
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" |
|
hyperparameter. Some cleaners are English-specific. You'll typically want to use: |
|
1. "english_cleaners" for English text |
|
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using |
|
the Unidecode library (https://pypi.python.org/pypi/Unidecode) |
|
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update |
|
the symbols in symbols.py to match your data). |
|
""" |
|
|
|
import logging |
|
import re |
|
|
|
import phonemizer |
|
import piper_phonemize |
|
from unidecode import unidecode |
|
|
|
|
|
critical_logger = logging.getLogger("phonemizer") |
|
critical_logger.setLevel(logging.CRITICAL) |
|
|
|
|
|
|
|
|
|
global_phonemizer = phonemizer.backend.EspeakBackend( |
|
language="ky", |
|
preserve_punctuation=True, |
|
with_stress=True, |
|
language_switch="remove-flags", |
|
logger=critical_logger, |
|
) |
|
|
|
|
|
|
|
_whitespace_re = re.compile(r"\s+") |
|
|
|
|
|
_abbreviations = [ |
|
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) |
|
for x in [ |
|
("mrs", "misess"), |
|
("mr", "mister"), |
|
("dr", "doctor"), |
|
("st", "saint"), |
|
("co", "company"), |
|
("jr", "junior"), |
|
("maj", "major"), |
|
("gen", "general"), |
|
("drs", "doctors"), |
|
("rev", "reverend"), |
|
("lt", "lieutenant"), |
|
("hon", "honorable"), |
|
("sgt", "sergeant"), |
|
("capt", "captain"), |
|
("esq", "esquire"), |
|
("ltd", "limited"), |
|
("col", "colonel"), |
|
("ft", "fort"), |
|
] |
|
] |
|
|
|
|
|
def expand_abbreviations(text): |
|
for regex, replacement in _abbreviations: |
|
text = re.sub(regex, replacement, text) |
|
return text |
|
|
|
|
|
def lowercase(text): |
|
return text.lower() |
|
|
|
|
|
def collapse_whitespace(text): |
|
return re.sub(_whitespace_re, " ", text) |
|
|
|
|
|
def convert_to_ascii(text): |
|
return unidecode(text) |
|
|
|
|
|
def basic_cleaners(text): |
|
"""Basic pipeline that lowercases and collapses whitespace without transliteration.""" |
|
text = lowercase(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
|
|
def transliteration_cleaners(text): |
|
"""Pipeline for non-English text that transliterates to ASCII.""" |
|
text = convert_to_ascii(text) |
|
text = lowercase(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
|
|
def kyrgyz_cleaners(text): |
|
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress""" |
|
text = lowercase(text) |
|
phonemes = global_phonemizer.phonemize([text], strip=True, njobs=1)[0] |
|
phonemes = collapse_whitespace(phonemes) |
|
return phonemes |
|
|
|
|
|
def english_cleaners_piper(text): |
|
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress""" |
|
text = convert_to_ascii(text) |
|
text = lowercase(text) |
|
text = expand_abbreviations(text) |
|
phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0]) |
|
phonemes = collapse_whitespace(phonemes) |
|
return phonemes |
|
|