|
import math |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from conformer import ConformerBlock |
|
from diffusers.models.activations import get_activation |
|
from einops import pack, rearrange, repeat |
|
|
|
from matcha.models.components.transformer import BasicTransformerBlock |
|
|
|
|
|
class SinusoidalPosEmb(torch.nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.dim = dim |
|
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even" |
|
|
|
def forward(self, x, scale=1000): |
|
if x.ndim < 1: |
|
x = x.unsqueeze(0) |
|
device = x.device |
|
half_dim = self.dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb) |
|
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) |
|
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) |
|
return emb |
|
|
|
|
|
class Block1D(torch.nn.Module): |
|
def __init__(self, dim, dim_out, groups=8): |
|
super().__init__() |
|
self.block = torch.nn.Sequential( |
|
torch.nn.Conv1d(dim, dim_out, 3, padding=1), |
|
torch.nn.GroupNorm(groups, dim_out), |
|
nn.Mish(), |
|
) |
|
|
|
def forward(self, x, mask): |
|
output = self.block(x * mask) |
|
return output * mask |
|
|
|
|
|
class ResnetBlock1D(torch.nn.Module): |
|
def __init__(self, dim, dim_out, time_emb_dim, groups=8): |
|
super().__init__() |
|
self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out)) |
|
|
|
self.block1 = Block1D(dim, dim_out, groups=groups) |
|
self.block2 = Block1D(dim_out, dim_out, groups=groups) |
|
|
|
self.res_conv = torch.nn.Conv1d(dim, dim_out, 1) |
|
|
|
def forward(self, x, mask, time_emb): |
|
h = self.block1(x, mask) |
|
h += self.mlp(time_emb).unsqueeze(-1) |
|
h = self.block2(h, mask) |
|
output = h + self.res_conv(x * mask) |
|
return output |
|
|
|
|
|
class Downsample1D(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class TimestepEmbedding(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
time_embed_dim: int, |
|
act_fn: str = "silu", |
|
out_dim: int = None, |
|
post_act_fn: Optional[str] = None, |
|
cond_proj_dim=None, |
|
): |
|
super().__init__() |
|
|
|
self.linear_1 = nn.Linear(in_channels, time_embed_dim) |
|
|
|
if cond_proj_dim is not None: |
|
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) |
|
else: |
|
self.cond_proj = None |
|
|
|
self.act = get_activation(act_fn) |
|
|
|
if out_dim is not None: |
|
time_embed_dim_out = out_dim |
|
else: |
|
time_embed_dim_out = time_embed_dim |
|
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out) |
|
|
|
if post_act_fn is None: |
|
self.post_act = None |
|
else: |
|
self.post_act = get_activation(post_act_fn) |
|
|
|
def forward(self, sample, condition=None): |
|
if condition is not None: |
|
sample = sample + self.cond_proj(condition) |
|
sample = self.linear_1(sample) |
|
|
|
if self.act is not None: |
|
sample = self.act(sample) |
|
|
|
sample = self.linear_2(sample) |
|
|
|
if self.post_act is not None: |
|
sample = self.post_act(sample) |
|
return sample |
|
|
|
|
|
class Upsample1D(nn.Module): |
|
"""A 1D upsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
use_conv_transpose (`bool`, default `False`): |
|
option to use a convolution transpose. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
""" |
|
|
|
def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_conv_transpose = use_conv_transpose |
|
self.name = name |
|
|
|
self.conv = None |
|
if use_conv_transpose: |
|
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1) |
|
elif use_conv: |
|
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1) |
|
|
|
def forward(self, inputs): |
|
assert inputs.shape[1] == self.channels |
|
if self.use_conv_transpose: |
|
return self.conv(inputs) |
|
|
|
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest") |
|
|
|
if self.use_conv: |
|
outputs = self.conv(outputs) |
|
|
|
return outputs |
|
|
|
|
|
class ConformerWrapper(ConformerBlock): |
|
def __init__( |
|
self, |
|
*, |
|
dim, |
|
dim_head=64, |
|
heads=8, |
|
ff_mult=4, |
|
conv_expansion_factor=2, |
|
conv_kernel_size=31, |
|
attn_dropout=0, |
|
ff_dropout=0, |
|
conv_dropout=0, |
|
conv_causal=False, |
|
): |
|
super().__init__( |
|
dim=dim, |
|
dim_head=dim_head, |
|
heads=heads, |
|
ff_mult=ff_mult, |
|
conv_expansion_factor=conv_expansion_factor, |
|
conv_kernel_size=conv_kernel_size, |
|
attn_dropout=attn_dropout, |
|
ff_dropout=ff_dropout, |
|
conv_dropout=conv_dropout, |
|
conv_causal=conv_causal, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
timestep=None, |
|
): |
|
return super().forward(x=hidden_states, mask=attention_mask.bool()) |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
channels=(256, 256), |
|
dropout=0.05, |
|
attention_head_dim=64, |
|
n_blocks=1, |
|
num_mid_blocks=2, |
|
num_heads=4, |
|
act_fn="snake", |
|
down_block_type="transformer", |
|
mid_block_type="transformer", |
|
up_block_type="transformer", |
|
): |
|
super().__init__() |
|
channels = tuple(channels) |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
|
|
self.time_embeddings = SinusoidalPosEmb(in_channels) |
|
time_embed_dim = channels[0] * 4 |
|
self.time_mlp = TimestepEmbedding( |
|
in_channels=in_channels, |
|
time_embed_dim=time_embed_dim, |
|
act_fn="silu", |
|
) |
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
self.mid_blocks = nn.ModuleList([]) |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
output_channel = in_channels |
|
for i in range(len(channels)): |
|
input_channel = output_channel |
|
output_channel = channels[i] |
|
is_last = i == len(channels) - 1 |
|
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) |
|
transformer_blocks = nn.ModuleList( |
|
[ |
|
self.get_block( |
|
down_block_type, |
|
output_channel, |
|
attention_head_dim, |
|
num_heads, |
|
dropout, |
|
act_fn, |
|
) |
|
for _ in range(n_blocks) |
|
] |
|
) |
|
downsample = ( |
|
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1) |
|
) |
|
|
|
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample])) |
|
|
|
for i in range(num_mid_blocks): |
|
input_channel = channels[-1] |
|
out_channels = channels[-1] |
|
|
|
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) |
|
|
|
transformer_blocks = nn.ModuleList( |
|
[ |
|
self.get_block( |
|
mid_block_type, |
|
output_channel, |
|
attention_head_dim, |
|
num_heads, |
|
dropout, |
|
act_fn, |
|
) |
|
for _ in range(n_blocks) |
|
] |
|
) |
|
|
|
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks])) |
|
|
|
channels = channels[::-1] + (channels[0],) |
|
for i in range(len(channels) - 1): |
|
input_channel = channels[i] |
|
output_channel = channels[i + 1] |
|
is_last = i == len(channels) - 2 |
|
|
|
resnet = ResnetBlock1D( |
|
dim=2 * input_channel, |
|
dim_out=output_channel, |
|
time_emb_dim=time_embed_dim, |
|
) |
|
transformer_blocks = nn.ModuleList( |
|
[ |
|
self.get_block( |
|
up_block_type, |
|
output_channel, |
|
attention_head_dim, |
|
num_heads, |
|
dropout, |
|
act_fn, |
|
) |
|
for _ in range(n_blocks) |
|
] |
|
) |
|
upsample = ( |
|
Upsample1D(output_channel, use_conv_transpose=True) |
|
if not is_last |
|
else nn.Conv1d(output_channel, output_channel, 3, padding=1) |
|
) |
|
|
|
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample])) |
|
|
|
self.final_block = Block1D(channels[-1], channels[-1]) |
|
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1) |
|
|
|
self.initialize_weights() |
|
|
|
|
|
@staticmethod |
|
def get_block(block_type, dim, attention_head_dim, num_heads, dropout, act_fn): |
|
if block_type == "conformer": |
|
block = ConformerWrapper( |
|
dim=dim, |
|
dim_head=attention_head_dim, |
|
heads=num_heads, |
|
ff_mult=1, |
|
conv_expansion_factor=2, |
|
ff_dropout=dropout, |
|
attn_dropout=dropout, |
|
conv_dropout=dropout, |
|
conv_kernel_size=31, |
|
) |
|
elif block_type == "transformer": |
|
block = BasicTransformerBlock( |
|
dim=dim, |
|
num_attention_heads=num_heads, |
|
attention_head_dim=attention_head_dim, |
|
dropout=dropout, |
|
activation_fn=act_fn, |
|
) |
|
else: |
|
raise ValueError(f"Unknown block type {block_type}") |
|
|
|
return block |
|
|
|
def initialize_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv1d): |
|
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") |
|
|
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
elif isinstance(m, nn.GroupNorm): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
elif isinstance(m, nn.Linear): |
|
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") |
|
|
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x, mask, mu, t, spks=None, cond=None): |
|
"""Forward pass of the UNet1DConditional model. |
|
|
|
Args: |
|
x (torch.Tensor): shape (batch_size, in_channels, time) |
|
mask (_type_): shape (batch_size, 1, time) |
|
t (_type_): shape (batch_size) |
|
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None. |
|
cond (_type_, optional): placeholder for future use. Defaults to None. |
|
|
|
Raises: |
|
ValueError: _description_ |
|
ValueError: _description_ |
|
|
|
Returns: |
|
_type_: _description_ |
|
""" |
|
|
|
t = self.time_embeddings(t) |
|
t = self.time_mlp(t) |
|
|
|
x = pack([x, mu], "b * t")[0] |
|
|
|
if spks is not None: |
|
spks = repeat(spks, "b c -> b c t", t=x.shape[-1]) |
|
x = pack([x, spks], "b * t")[0] |
|
|
|
hiddens = [] |
|
masks = [mask] |
|
for resnet, transformer_blocks, downsample in self.down_blocks: |
|
mask_down = masks[-1] |
|
x = resnet(x, mask_down, t) |
|
x = rearrange(x, "b c t -> b t c") |
|
mask_down = rearrange(mask_down, "b 1 t -> b t") |
|
for transformer_block in transformer_blocks: |
|
x = transformer_block( |
|
hidden_states=x, |
|
attention_mask=mask_down, |
|
timestep=t, |
|
) |
|
x = rearrange(x, "b t c -> b c t") |
|
mask_down = rearrange(mask_down, "b t -> b 1 t") |
|
hiddens.append(x) |
|
x = downsample(x * mask_down) |
|
masks.append(mask_down[:, :, ::2]) |
|
|
|
masks = masks[:-1] |
|
mask_mid = masks[-1] |
|
|
|
for resnet, transformer_blocks in self.mid_blocks: |
|
x = resnet(x, mask_mid, t) |
|
x = rearrange(x, "b c t -> b t c") |
|
mask_mid = rearrange(mask_mid, "b 1 t -> b t") |
|
for transformer_block in transformer_blocks: |
|
x = transformer_block( |
|
hidden_states=x, |
|
attention_mask=mask_mid, |
|
timestep=t, |
|
) |
|
x = rearrange(x, "b t c -> b c t") |
|
mask_mid = rearrange(mask_mid, "b t -> b 1 t") |
|
|
|
for resnet, transformer_blocks, upsample in self.up_blocks: |
|
mask_up = masks.pop() |
|
x = resnet(pack([x, hiddens.pop()], "b * t")[0], mask_up, t) |
|
x = rearrange(x, "b c t -> b t c") |
|
mask_up = rearrange(mask_up, "b 1 t -> b t") |
|
for transformer_block in transformer_blocks: |
|
x = transformer_block( |
|
hidden_states=x, |
|
attention_mask=mask_up, |
|
timestep=t, |
|
) |
|
x = rearrange(x, "b t c -> b c t") |
|
mask_up = rearrange(mask_up, "b t -> b 1 t") |
|
x = upsample(x * mask_up) |
|
|
|
x = self.final_block(x, mask_up) |
|
output = self.final_proj(x * mask_up) |
|
|
|
return output * mask |
|
|