thatdramebaazguy
commited on
Commit
•
de652a0
1
Parent(s):
1d0c5ce
Update README.md
Browse files
README.md
CHANGED
@@ -1 +1,73 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- imdb (Movie corpus for Domain Adaptive Pretraining)
|
4 |
+
- cornell_movie_dialogue
|
5 |
+
- MIT Movie (NER Dataset)
|
6 |
+
|
7 |
+
language:
|
8 |
+
- English
|
9 |
+
|
10 |
+
thumbnail:
|
11 |
+
|
12 |
+
tags:
|
13 |
+
- roberta
|
14 |
+
- roberta-base
|
15 |
+
- token-classification
|
16 |
+
- NER
|
17 |
+
- named-entities
|
18 |
+
- BIO
|
19 |
+
- movies
|
20 |
+
- DAPT
|
21 |
+
|
22 |
+
license: cc-by-4.0
|
23 |
+
|
24 |
+
---
|
25 |
+
# Movie Roberta + Movies NER Task
|
26 |
+
|
27 |
+
Objective:
|
28 |
+
This is Roberta Base + Movie DAPT --> trained for the NER task using MIT Movie Dataset
|
29 |
+
https://huggingface.co/thatdramebaazguy/movie-roberta-base was used as the MovieRoberta.
|
30 |
+
|
31 |
+
```
|
32 |
+
model_name = "thatdramebaazguy/movie-roberta-MITmovieroberta-base-MITmovie"
|
33 |
+
pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="ner")
|
34 |
+
```
|
35 |
+
|
36 |
+
## Overview
|
37 |
+
**Language model:** roberta-base
|
38 |
+
**Language:** English
|
39 |
+
**Downstream-task:** NER
|
40 |
+
**Training data:** MIT Movie
|
41 |
+
**Eval data:** MIT Movie
|
42 |
+
**Infrastructure**: 2x Tesla v100
|
43 |
+
**Code:** See [example](https://github.com/adityaarunsinghal/Domain-Adaptation/blob/master/scripts/shell_scripts/movieR_NER_squad.sh)
|
44 |
+
|
45 |
+
## Hyperparameters
|
46 |
+
```
|
47 |
+
Num examples = 6253
|
48 |
+
Num Epochs = 5
|
49 |
+
Instantaneous batch size per device = 64
|
50 |
+
Total train batch size (w. parallel, distributed & accumulation) = 128
|
51 |
+
|
52 |
+
```
|
53 |
+
## Performance
|
54 |
+
|
55 |
+
### Eval on MIT Movie
|
56 |
+
- epoch = 5.0
|
57 |
+
- eval_accuracy = 0.9472
|
58 |
+
- eval_f1 = 0.8876
|
59 |
+
- eval_loss = 0.2211
|
60 |
+
- eval_mem_cpu_alloc_delta = 3MB
|
61 |
+
- eval_mem_cpu_peaked_delta = 2MB
|
62 |
+
- eval_mem_gpu_alloc_delta = 0MB
|
63 |
+
- eval_mem_gpu_peaked_delta = 38MB
|
64 |
+
- eval_precision = 0.887
|
65 |
+
- eval_recall = 0.8881
|
66 |
+
- eval_runtime = 0:00:03.73
|
67 |
+
- eval_samples = 1955
|
68 |
+
- eval_samples_per_second = 523.095
|
69 |
+
|
70 |
+
Github Repo:
|
71 |
+
- [Domain-Adaptation Project](https://github.com/adityaarunsinghal/Domain-Adaptation/)
|
72 |
+
|
73 |
+
---
|