metadata
license: apache-2.0
base_model: vietgpt/bert-30M-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-30M-uncased-classification-CMC-fqa-new
results: []
bert-30M-uncased-classification-CMC-fqa-new
This model is a fine-tuned version of vietgpt/bert-30M-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7760
- Accuracy: 0.9677
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 20 | 3.4306 | 0.0323 |
No log | 2.0 | 40 | 3.4143 | 0.0323 |
No log | 3.0 | 60 | 3.4026 | 0.0645 |
No log | 4.0 | 80 | 3.3888 | 0.2258 |
No log | 5.0 | 100 | 3.3725 | 0.2581 |
No log | 6.0 | 120 | 3.3523 | 0.3548 |
No log | 7.0 | 140 | 3.3244 | 0.4194 |
No log | 8.0 | 160 | 3.2797 | 0.3871 |
No log | 9.0 | 180 | 3.2072 | 0.5161 |
No log | 10.0 | 200 | 3.0977 | 0.4839 |
No log | 11.0 | 220 | 2.9538 | 0.2903 |
No log | 12.0 | 240 | 2.8136 | 0.2903 |
No log | 13.0 | 260 | 2.6977 | 0.3871 |
No log | 14.0 | 280 | 2.5970 | 0.4839 |
No log | 15.0 | 300 | 2.5041 | 0.5806 |
No log | 16.0 | 320 | 2.4092 | 0.5484 |
No log | 17.0 | 340 | 2.3064 | 0.6774 |
No log | 18.0 | 360 | 2.2057 | 0.6774 |
No log | 19.0 | 380 | 2.0945 | 0.7419 |
No log | 20.0 | 400 | 1.9827 | 0.7742 |
No log | 21.0 | 420 | 1.8641 | 0.7742 |
No log | 22.0 | 440 | 1.7476 | 0.7742 |
No log | 23.0 | 460 | 1.6518 | 0.8065 |
No log | 24.0 | 480 | 1.5613 | 0.8065 |
2.7559 | 25.0 | 500 | 1.4894 | 0.8387 |
2.7559 | 26.0 | 520 | 1.4089 | 0.8387 |
2.7559 | 27.0 | 540 | 1.3390 | 0.8065 |
2.7559 | 28.0 | 560 | 1.2802 | 0.8710 |
2.7559 | 29.0 | 580 | 1.2265 | 0.8710 |
2.7559 | 30.0 | 600 | 1.1639 | 0.8387 |
2.7559 | 31.0 | 620 | 1.1253 | 0.8710 |
2.7559 | 32.0 | 640 | 1.0845 | 0.9032 |
2.7559 | 33.0 | 660 | 1.0468 | 0.9032 |
2.7559 | 34.0 | 680 | 1.0144 | 0.9032 |
2.7559 | 35.0 | 700 | 0.9805 | 0.9355 |
2.7559 | 36.0 | 720 | 0.9564 | 0.9355 |
2.7559 | 37.0 | 740 | 0.9237 | 0.9677 |
2.7559 | 38.0 | 760 | 0.9041 | 0.9355 |
2.7559 | 39.0 | 780 | 0.8815 | 0.9677 |
2.7559 | 40.0 | 800 | 0.8668 | 0.9677 |
2.7559 | 41.0 | 820 | 0.8486 | 0.9677 |
2.7559 | 42.0 | 840 | 0.8288 | 0.9677 |
2.7559 | 43.0 | 860 | 0.8174 | 0.9677 |
2.7559 | 44.0 | 880 | 0.8058 | 0.9677 |
2.7559 | 45.0 | 900 | 0.7978 | 0.9677 |
2.7559 | 46.0 | 920 | 0.7901 | 0.9677 |
2.7559 | 47.0 | 940 | 0.7842 | 0.9677 |
2.7559 | 48.0 | 960 | 0.7798 | 0.9677 |
2.7559 | 49.0 | 980 | 0.7769 | 0.9677 |
1.1031 | 50.0 | 1000 | 0.7760 | 0.9677 |
Framework versions
- Transformers 4.37.1
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1