terry69 commited on
Commit
728827b
1 Parent(s): 6c2a2c1

Model save

Browse files
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
5
+ tags:
6
+ - trl
7
+ - sft
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: preference_p0.01_seed42_level2_raremixbatch16
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # preference_p0.01_seed42_level2_raremixbatch16
18
+
19
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 1e-05
39
+ - train_batch_size: 4
40
+ - eval_batch_size: 1
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 4
44
+ - total_train_batch_size: 16
45
+ - total_eval_batch_size: 4
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 1
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.44.2
58
+ - Pytorch 2.3.1+cu121
59
+ - Datasets 2.19.1
60
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "total_flos": 252825934233600.0,
4
+ "train_loss": 0.5143274352170419,
5
+ "train_runtime": 26101.4191,
6
+ "train_samples": 98881,
7
+ "train_samples_per_second": 1.48,
8
+ "train_steps_per_second": 0.093
9
+ }
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 32768,
15
+ "model_type": "mistral",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.44.2",
25
+ "use_cache": false,
26
+ "vocab_size": 32000
27
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.44.2"
6
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3620744f1d972cb37677420bf2db561e0dd85d004bb96c879ce39fc98a2c6851
3
+ size 4943162336
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78c541ce205c62ed23e073728360213b80b37d6f3c9bf0f5dc109b9ba8b56577
3
+ size 4999819336
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9857257c194c48fe4daf56020f319ffc8d618d88e36f3c3a0985308ea6928c33
3
+ size 4540516344
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483464192
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
runs/Sep16_07-59-08_COE-CS-sv004/events.out.tfevents.1726473928.COE-CS-sv004.2273395.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad7ca6be0881d638c64195bf92a2344c8c0f464e420de63c413c406279008753
3
+ size 107867
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [],
32
+ "bos_token": "<s>",
33
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
34
+ "clean_up_tokenization_spaces": false,
35
+ "eos_token": "</s>",
36
+ "legacy": false,
37
+ "model_max_length": 2048,
38
+ "pad_token": "</s>",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "total_flos": 252825934233600.0,
4
+ "train_loss": 0.5143274352170419,
5
+ "train_runtime": 26101.4191,
6
+ "train_samples": 98881,
7
+ "train_samples_per_second": 1.48,
8
+ "train_steps_per_second": 0.093
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,3437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 2415,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.00041407867494824016,
13
+ "grad_norm": 24.082783987617052,
14
+ "learning_rate": 4.132231404958678e-08,
15
+ "loss": 1.3915,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.002070393374741201,
20
+ "grad_norm": 24.927352059558704,
21
+ "learning_rate": 2.066115702479339e-07,
22
+ "loss": 1.4137,
23
+ "step": 5
24
+ },
25
+ {
26
+ "epoch": 0.004140786749482402,
27
+ "grad_norm": 15.956520007454369,
28
+ "learning_rate": 4.132231404958678e-07,
29
+ "loss": 1.3648,
30
+ "step": 10
31
+ },
32
+ {
33
+ "epoch": 0.006211180124223602,
34
+ "grad_norm": 8.550349209845118,
35
+ "learning_rate": 6.198347107438018e-07,
36
+ "loss": 1.2504,
37
+ "step": 15
38
+ },
39
+ {
40
+ "epoch": 0.008281573498964804,
41
+ "grad_norm": 9.55086086758466,
42
+ "learning_rate": 8.264462809917356e-07,
43
+ "loss": 1.1392,
44
+ "step": 20
45
+ },
46
+ {
47
+ "epoch": 0.010351966873706004,
48
+ "grad_norm": 5.927325777610998,
49
+ "learning_rate": 1.0330578512396695e-06,
50
+ "loss": 1.0294,
51
+ "step": 25
52
+ },
53
+ {
54
+ "epoch": 0.012422360248447204,
55
+ "grad_norm": 3.3775223586374876,
56
+ "learning_rate": 1.2396694214876035e-06,
57
+ "loss": 0.9764,
58
+ "step": 30
59
+ },
60
+ {
61
+ "epoch": 0.014492753623188406,
62
+ "grad_norm": 3.366952648284076,
63
+ "learning_rate": 1.4462809917355372e-06,
64
+ "loss": 0.9499,
65
+ "step": 35
66
+ },
67
+ {
68
+ "epoch": 0.016563146997929608,
69
+ "grad_norm": 3.138423239660313,
70
+ "learning_rate": 1.6528925619834712e-06,
71
+ "loss": 0.9269,
72
+ "step": 40
73
+ },
74
+ {
75
+ "epoch": 0.018633540372670808,
76
+ "grad_norm": 2.979310152009545,
77
+ "learning_rate": 1.859504132231405e-06,
78
+ "loss": 0.9134,
79
+ "step": 45
80
+ },
81
+ {
82
+ "epoch": 0.020703933747412008,
83
+ "grad_norm": 3.0241182130041913,
84
+ "learning_rate": 2.066115702479339e-06,
85
+ "loss": 0.9133,
86
+ "step": 50
87
+ },
88
+ {
89
+ "epoch": 0.022774327122153208,
90
+ "grad_norm": 3.1850362063593276,
91
+ "learning_rate": 2.2727272727272728e-06,
92
+ "loss": 0.8945,
93
+ "step": 55
94
+ },
95
+ {
96
+ "epoch": 0.024844720496894408,
97
+ "grad_norm": 3.079066061647991,
98
+ "learning_rate": 2.479338842975207e-06,
99
+ "loss": 0.8983,
100
+ "step": 60
101
+ },
102
+ {
103
+ "epoch": 0.026915113871635612,
104
+ "grad_norm": 3.120502951434461,
105
+ "learning_rate": 2.6859504132231405e-06,
106
+ "loss": 0.8919,
107
+ "step": 65
108
+ },
109
+ {
110
+ "epoch": 0.028985507246376812,
111
+ "grad_norm": 3.054715083150286,
112
+ "learning_rate": 2.8925619834710743e-06,
113
+ "loss": 0.8816,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 0.031055900621118012,
118
+ "grad_norm": 3.188001221672915,
119
+ "learning_rate": 3.0991735537190086e-06,
120
+ "loss": 0.8766,
121
+ "step": 75
122
+ },
123
+ {
124
+ "epoch": 0.033126293995859216,
125
+ "grad_norm": 3.0101176148714304,
126
+ "learning_rate": 3.3057851239669424e-06,
127
+ "loss": 0.872,
128
+ "step": 80
129
+ },
130
+ {
131
+ "epoch": 0.035196687370600416,
132
+ "grad_norm": 3.149359365247228,
133
+ "learning_rate": 3.5123966942148763e-06,
134
+ "loss": 0.8496,
135
+ "step": 85
136
+ },
137
+ {
138
+ "epoch": 0.037267080745341616,
139
+ "grad_norm": 3.120610784229853,
140
+ "learning_rate": 3.71900826446281e-06,
141
+ "loss": 0.8601,
142
+ "step": 90
143
+ },
144
+ {
145
+ "epoch": 0.039337474120082816,
146
+ "grad_norm": 2.9979744537524375,
147
+ "learning_rate": 3.925619834710744e-06,
148
+ "loss": 0.8664,
149
+ "step": 95
150
+ },
151
+ {
152
+ "epoch": 0.041407867494824016,
153
+ "grad_norm": 3.0423377925355783,
154
+ "learning_rate": 4.132231404958678e-06,
155
+ "loss": 0.8616,
156
+ "step": 100
157
+ },
158
+ {
159
+ "epoch": 0.043478260869565216,
160
+ "grad_norm": 3.090679409633537,
161
+ "learning_rate": 4.338842975206612e-06,
162
+ "loss": 0.8588,
163
+ "step": 105
164
+ },
165
+ {
166
+ "epoch": 0.045548654244306416,
167
+ "grad_norm": 3.142470242173892,
168
+ "learning_rate": 4.5454545454545455e-06,
169
+ "loss": 0.8665,
170
+ "step": 110
171
+ },
172
+ {
173
+ "epoch": 0.047619047619047616,
174
+ "grad_norm": 2.9965627140856133,
175
+ "learning_rate": 4.75206611570248e-06,
176
+ "loss": 0.8471,
177
+ "step": 115
178
+ },
179
+ {
180
+ "epoch": 0.049689440993788817,
181
+ "grad_norm": 2.8450247348143938,
182
+ "learning_rate": 4.958677685950414e-06,
183
+ "loss": 0.8411,
184
+ "step": 120
185
+ },
186
+ {
187
+ "epoch": 0.051759834368530024,
188
+ "grad_norm": 3.1345891420193923,
189
+ "learning_rate": 5.165289256198347e-06,
190
+ "loss": 0.8402,
191
+ "step": 125
192
+ },
193
+ {
194
+ "epoch": 0.053830227743271224,
195
+ "grad_norm": 3.1394429356207096,
196
+ "learning_rate": 5.371900826446281e-06,
197
+ "loss": 0.8435,
198
+ "step": 130
199
+ },
200
+ {
201
+ "epoch": 0.055900621118012424,
202
+ "grad_norm": 5.113603154695779,
203
+ "learning_rate": 5.578512396694216e-06,
204
+ "loss": 0.827,
205
+ "step": 135
206
+ },
207
+ {
208
+ "epoch": 0.057971014492753624,
209
+ "grad_norm": 3.1016506456626254,
210
+ "learning_rate": 5.785123966942149e-06,
211
+ "loss": 0.8402,
212
+ "step": 140
213
+ },
214
+ {
215
+ "epoch": 0.060041407867494824,
216
+ "grad_norm": 2.99784578760738,
217
+ "learning_rate": 5.991735537190083e-06,
218
+ "loss": 0.8265,
219
+ "step": 145
220
+ },
221
+ {
222
+ "epoch": 0.062111801242236024,
223
+ "grad_norm": 3.0494902650762623,
224
+ "learning_rate": 6.198347107438017e-06,
225
+ "loss": 0.8108,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 0.06418219461697723,
230
+ "grad_norm": 3.1615292574211993,
231
+ "learning_rate": 6.404958677685951e-06,
232
+ "loss": 0.8317,
233
+ "step": 155
234
+ },
235
+ {
236
+ "epoch": 0.06625258799171843,
237
+ "grad_norm": 3.1074859962537067,
238
+ "learning_rate": 6.611570247933885e-06,
239
+ "loss": 0.8112,
240
+ "step": 160
241
+ },
242
+ {
243
+ "epoch": 0.06832298136645963,
244
+ "grad_norm": 3.112241035749247,
245
+ "learning_rate": 6.818181818181818e-06,
246
+ "loss": 0.8197,
247
+ "step": 165
248
+ },
249
+ {
250
+ "epoch": 0.07039337474120083,
251
+ "grad_norm": 3.1217916015425713,
252
+ "learning_rate": 7.0247933884297525e-06,
253
+ "loss": 0.8109,
254
+ "step": 170
255
+ },
256
+ {
257
+ "epoch": 0.07246376811594203,
258
+ "grad_norm": 2.845267862276201,
259
+ "learning_rate": 7.231404958677687e-06,
260
+ "loss": 0.8178,
261
+ "step": 175
262
+ },
263
+ {
264
+ "epoch": 0.07453416149068323,
265
+ "grad_norm": 3.1072753728134916,
266
+ "learning_rate": 7.43801652892562e-06,
267
+ "loss": 0.824,
268
+ "step": 180
269
+ },
270
+ {
271
+ "epoch": 0.07660455486542443,
272
+ "grad_norm": 3.0377955598038473,
273
+ "learning_rate": 7.644628099173555e-06,
274
+ "loss": 0.8055,
275
+ "step": 185
276
+ },
277
+ {
278
+ "epoch": 0.07867494824016563,
279
+ "grad_norm": 2.8402645063559446,
280
+ "learning_rate": 7.851239669421489e-06,
281
+ "loss": 0.8168,
282
+ "step": 190
283
+ },
284
+ {
285
+ "epoch": 0.08074534161490683,
286
+ "grad_norm": 3.0642470118373084,
287
+ "learning_rate": 8.057851239669421e-06,
288
+ "loss": 0.8231,
289
+ "step": 195
290
+ },
291
+ {
292
+ "epoch": 0.08281573498964803,
293
+ "grad_norm": 3.5617224210742764,
294
+ "learning_rate": 8.264462809917356e-06,
295
+ "loss": 0.8134,
296
+ "step": 200
297
+ },
298
+ {
299
+ "epoch": 0.08488612836438923,
300
+ "grad_norm": 2.930705372475165,
301
+ "learning_rate": 8.47107438016529e-06,
302
+ "loss": 0.8081,
303
+ "step": 205
304
+ },
305
+ {
306
+ "epoch": 0.08695652173913043,
307
+ "grad_norm": 2.982860889121232,
308
+ "learning_rate": 8.677685950413224e-06,
309
+ "loss": 0.809,
310
+ "step": 210
311
+ },
312
+ {
313
+ "epoch": 0.08902691511387163,
314
+ "grad_norm": 2.935587168969496,
315
+ "learning_rate": 8.884297520661158e-06,
316
+ "loss": 0.8169,
317
+ "step": 215
318
+ },
319
+ {
320
+ "epoch": 0.09109730848861283,
321
+ "grad_norm": 2.9901723241847153,
322
+ "learning_rate": 9.090909090909091e-06,
323
+ "loss": 0.8153,
324
+ "step": 220
325
+ },
326
+ {
327
+ "epoch": 0.09316770186335403,
328
+ "grad_norm": 2.921963512037345,
329
+ "learning_rate": 9.297520661157025e-06,
330
+ "loss": 0.7979,
331
+ "step": 225
332
+ },
333
+ {
334
+ "epoch": 0.09523809523809523,
335
+ "grad_norm": 3.080906597029773,
336
+ "learning_rate": 9.50413223140496e-06,
337
+ "loss": 0.7883,
338
+ "step": 230
339
+ },
340
+ {
341
+ "epoch": 0.09730848861283643,
342
+ "grad_norm": 2.9796857583597913,
343
+ "learning_rate": 9.710743801652894e-06,
344
+ "loss": 0.7798,
345
+ "step": 235
346
+ },
347
+ {
348
+ "epoch": 0.09937888198757763,
349
+ "grad_norm": 2.7938646070615105,
350
+ "learning_rate": 9.917355371900828e-06,
351
+ "loss": 0.8149,
352
+ "step": 240
353
+ },
354
+ {
355
+ "epoch": 0.10144927536231885,
356
+ "grad_norm": 3.0770015879691766,
357
+ "learning_rate": 9.999952971391373e-06,
358
+ "loss": 0.8014,
359
+ "step": 245
360
+ },
361
+ {
362
+ "epoch": 0.10351966873706005,
363
+ "grad_norm": 2.964452998837368,
364
+ "learning_rate": 9.999665577542406e-06,
365
+ "loss": 0.8048,
366
+ "step": 250
367
+ },
368
+ {
369
+ "epoch": 0.10559006211180125,
370
+ "grad_norm": 3.022786395730761,
371
+ "learning_rate": 9.999116931848504e-06,
372
+ "loss": 0.7931,
373
+ "step": 255
374
+ },
375
+ {
376
+ "epoch": 0.10766045548654245,
377
+ "grad_norm": 2.7899060573318497,
378
+ "learning_rate": 9.99830706297852e-06,
379
+ "loss": 0.7975,
380
+ "step": 260
381
+ },
382
+ {
383
+ "epoch": 0.10973084886128365,
384
+ "grad_norm": 2.9941483284208803,
385
+ "learning_rate": 9.997236013251234e-06,
386
+ "loss": 0.783,
387
+ "step": 265
388
+ },
389
+ {
390
+ "epoch": 0.11180124223602485,
391
+ "grad_norm": 2.8639530933271597,
392
+ "learning_rate": 9.995903838633133e-06,
393
+ "loss": 0.7767,
394
+ "step": 270
395
+ },
396
+ {
397
+ "epoch": 0.11387163561076605,
398
+ "grad_norm": 2.893987524405616,
399
+ "learning_rate": 9.994310608735492e-06,
400
+ "loss": 0.7975,
401
+ "step": 275
402
+ },
403
+ {
404
+ "epoch": 0.11594202898550725,
405
+ "grad_norm": 3.002021189598603,
406
+ "learning_rate": 9.99245640681072e-06,
407
+ "loss": 0.7962,
408
+ "step": 280
409
+ },
410
+ {
411
+ "epoch": 0.11801242236024845,
412
+ "grad_norm": 2.884029199363375,
413
+ "learning_rate": 9.99034132974804e-06,
414
+ "loss": 0.7815,
415
+ "step": 285
416
+ },
417
+ {
418
+ "epoch": 0.12008281573498965,
419
+ "grad_norm": 2.9227341204938746,
420
+ "learning_rate": 9.987965488068398e-06,
421
+ "loss": 0.7903,
422
+ "step": 290
423
+ },
424
+ {
425
+ "epoch": 0.12215320910973085,
426
+ "grad_norm": 3.09433044004106,
427
+ "learning_rate": 9.985329005918702e-06,
428
+ "loss": 0.7636,
429
+ "step": 295
430
+ },
431
+ {
432
+ "epoch": 0.12422360248447205,
433
+ "grad_norm": 3.14926423201632,
434
+ "learning_rate": 9.982432021065334e-06,
435
+ "loss": 0.7762,
436
+ "step": 300
437
+ },
438
+ {
439
+ "epoch": 0.12629399585921325,
440
+ "grad_norm": 3.000146608974552,
441
+ "learning_rate": 9.979274684886943e-06,
442
+ "loss": 0.7591,
443
+ "step": 305
444
+ },
445
+ {
446
+ "epoch": 0.12836438923395446,
447
+ "grad_norm": 2.9294337201892193,
448
+ "learning_rate": 9.975857162366547e-06,
449
+ "loss": 0.7592,
450
+ "step": 310
451
+ },
452
+ {
453
+ "epoch": 0.13043478260869565,
454
+ "grad_norm": 2.871508509341422,
455
+ "learning_rate": 9.972179632082899e-06,
456
+ "loss": 0.763,
457
+ "step": 315
458
+ },
459
+ {
460
+ "epoch": 0.13250517598343686,
461
+ "grad_norm": 2.9825261500051923,
462
+ "learning_rate": 9.968242286201171e-06,
463
+ "loss": 0.7699,
464
+ "step": 320
465
+ },
466
+ {
467
+ "epoch": 0.13457556935817805,
468
+ "grad_norm": 2.808336705810353,
469
+ "learning_rate": 9.964045330462896e-06,
470
+ "loss": 0.7743,
471
+ "step": 325
472
+ },
473
+ {
474
+ "epoch": 0.13664596273291926,
475
+ "grad_norm": 3.015312838928351,
476
+ "learning_rate": 9.959588984175228e-06,
477
+ "loss": 0.7718,
478
+ "step": 330
479
+ },
480
+ {
481
+ "epoch": 0.13871635610766045,
482
+ "grad_norm": 2.870579878017002,
483
+ "learning_rate": 9.954873480199483e-06,
484
+ "loss": 0.7851,
485
+ "step": 335
486
+ },
487
+ {
488
+ "epoch": 0.14078674948240166,
489
+ "grad_norm": 2.7554815247431983,
490
+ "learning_rate": 9.94989906493896e-06,
491
+ "loss": 0.7545,
492
+ "step": 340
493
+ },
494
+ {
495
+ "epoch": 0.14285714285714285,
496
+ "grad_norm": 2.75690418932418,
497
+ "learning_rate": 9.94466599832608e-06,
498
+ "loss": 0.7563,
499
+ "step": 345
500
+ },
501
+ {
502
+ "epoch": 0.14492753623188406,
503
+ "grad_norm": 2.852997059770447,
504
+ "learning_rate": 9.939174553808793e-06,
505
+ "loss": 0.7651,
506
+ "step": 350
507
+ },
508
+ {
509
+ "epoch": 0.14699792960662525,
510
+ "grad_norm": 2.770789020857082,
511
+ "learning_rate": 9.933425018336292e-06,
512
+ "loss": 0.7594,
513
+ "step": 355
514
+ },
515
+ {
516
+ "epoch": 0.14906832298136646,
517
+ "grad_norm": 3.026030650317298,
518
+ "learning_rate": 9.927417692344025e-06,
519
+ "loss": 0.7355,
520
+ "step": 360
521
+ },
522
+ {
523
+ "epoch": 0.15113871635610765,
524
+ "grad_norm": 2.9786011782652824,
525
+ "learning_rate": 9.921152889737985e-06,
526
+ "loss": 0.7343,
527
+ "step": 365
528
+ },
529
+ {
530
+ "epoch": 0.15320910973084886,
531
+ "grad_norm": 2.8419772278707396,
532
+ "learning_rate": 9.914630937878315e-06,
533
+ "loss": 0.7505,
534
+ "step": 370
535
+ },
536
+ {
537
+ "epoch": 0.15527950310559005,
538
+ "grad_norm": 2.762145018804381,
539
+ "learning_rate": 9.907852177562201e-06,
540
+ "loss": 0.7452,
541
+ "step": 375
542
+ },
543
+ {
544
+ "epoch": 0.15734989648033126,
545
+ "grad_norm": 2.6825337667863023,
546
+ "learning_rate": 9.900816963006063e-06,
547
+ "loss": 0.7423,
548
+ "step": 380
549
+ },
550
+ {
551
+ "epoch": 0.15942028985507245,
552
+ "grad_norm": 2.7080088144526226,
553
+ "learning_rate": 9.893525661827043e-06,
554
+ "loss": 0.7318,
555
+ "step": 385
556
+ },
557
+ {
558
+ "epoch": 0.16149068322981366,
559
+ "grad_norm": 3.030977827239322,
560
+ "learning_rate": 9.885978655023805e-06,
561
+ "loss": 0.7312,
562
+ "step": 390
563
+ },
564
+ {
565
+ "epoch": 0.16356107660455488,
566
+ "grad_norm": 3.040313981795896,
567
+ "learning_rate": 9.87817633695661e-06,
568
+ "loss": 0.7331,
569
+ "step": 395
570
+ },
571
+ {
572
+ "epoch": 0.16563146997929606,
573
+ "grad_norm": 2.8531908645344646,
574
+ "learning_rate": 9.87011911532673e-06,
575
+ "loss": 0.7303,
576
+ "step": 400
577
+ },
578
+ {
579
+ "epoch": 0.16770186335403728,
580
+ "grad_norm": 2.9309768565382885,
581
+ "learning_rate": 9.861807411155126e-06,
582
+ "loss": 0.7289,
583
+ "step": 405
584
+ },
585
+ {
586
+ "epoch": 0.16977225672877846,
587
+ "grad_norm": 2.8699572447082082,
588
+ "learning_rate": 9.853241658760457e-06,
589
+ "loss": 0.7167,
590
+ "step": 410
591
+ },
592
+ {
593
+ "epoch": 0.17184265010351968,
594
+ "grad_norm": 2.7894953022566065,
595
+ "learning_rate": 9.844422305736383e-06,
596
+ "loss": 0.7267,
597
+ "step": 415
598
+ },
599
+ {
600
+ "epoch": 0.17391304347826086,
601
+ "grad_norm": 2.836369561123053,
602
+ "learning_rate": 9.835349812928178e-06,
603
+ "loss": 0.7182,
604
+ "step": 420
605
+ },
606
+ {
607
+ "epoch": 0.17598343685300208,
608
+ "grad_norm": 2.8544078673515867,
609
+ "learning_rate": 9.826024654408645e-06,
610
+ "loss": 0.737,
611
+ "step": 425
612
+ },
613
+ {
614
+ "epoch": 0.17805383022774326,
615
+ "grad_norm": 2.711311382577373,
616
+ "learning_rate": 9.816447317453353e-06,
617
+ "loss": 0.7037,
618
+ "step": 430
619
+ },
620
+ {
621
+ "epoch": 0.18012422360248448,
622
+ "grad_norm": 2.810433161088231,
623
+ "learning_rate": 9.80661830251516e-06,
624
+ "loss": 0.6939,
625
+ "step": 435
626
+ },
627
+ {
628
+ "epoch": 0.18219461697722567,
629
+ "grad_norm": 3.289800860905077,
630
+ "learning_rate": 9.796538123198077e-06,
631
+ "loss": 0.7174,
632
+ "step": 440
633
+ },
634
+ {
635
+ "epoch": 0.18426501035196688,
636
+ "grad_norm": 2.587129399365275,
637
+ "learning_rate": 9.786207306230422e-06,
638
+ "loss": 0.7105,
639
+ "step": 445
640
+ },
641
+ {
642
+ "epoch": 0.18633540372670807,
643
+ "grad_norm": 2.907975372472839,
644
+ "learning_rate": 9.775626391437303e-06,
645
+ "loss": 0.7078,
646
+ "step": 450
647
+ },
648
+ {
649
+ "epoch": 0.18840579710144928,
650
+ "grad_norm": 2.725655072081525,
651
+ "learning_rate": 9.764795931712396e-06,
652
+ "loss": 0.7172,
653
+ "step": 455
654
+ },
655
+ {
656
+ "epoch": 0.19047619047619047,
657
+ "grad_norm": 2.685932024684609,
658
+ "learning_rate": 9.753716492989076e-06,
659
+ "loss": 0.6874,
660
+ "step": 460
661
+ },
662
+ {
663
+ "epoch": 0.19254658385093168,
664
+ "grad_norm": 2.933612272185732,
665
+ "learning_rate": 9.742388654210822e-06,
666
+ "loss": 0.6839,
667
+ "step": 465
668
+ },
669
+ {
670
+ "epoch": 0.19461697722567287,
671
+ "grad_norm": 2.8194507459788625,
672
+ "learning_rate": 9.730813007300984e-06,
673
+ "loss": 0.6978,
674
+ "step": 470
675
+ },
676
+ {
677
+ "epoch": 0.19668737060041408,
678
+ "grad_norm": 2.987546380858413,
679
+ "learning_rate": 9.718990157131841e-06,
680
+ "loss": 0.7011,
681
+ "step": 475
682
+ },
683
+ {
684
+ "epoch": 0.19875776397515527,
685
+ "grad_norm": 2.7372414926444817,
686
+ "learning_rate": 9.706920721492995e-06,
687
+ "loss": 0.6903,
688
+ "step": 480
689
+ },
690
+ {
691
+ "epoch": 0.20082815734989648,
692
+ "grad_norm": 2.846181638635384,
693
+ "learning_rate": 9.694605331059094e-06,
694
+ "loss": 0.7003,
695
+ "step": 485
696
+ },
697
+ {
698
+ "epoch": 0.2028985507246377,
699
+ "grad_norm": 2.9193024154798195,
700
+ "learning_rate": 9.682044629356874e-06,
701
+ "loss": 0.6906,
702
+ "step": 490
703
+ },
704
+ {
705
+ "epoch": 0.20496894409937888,
706
+ "grad_norm": 2.964752286342872,
707
+ "learning_rate": 9.669239272731538e-06,
708
+ "loss": 0.6787,
709
+ "step": 495
710
+ },
711
+ {
712
+ "epoch": 0.2070393374741201,
713
+ "grad_norm": 2.967854934387599,
714
+ "learning_rate": 9.656189930312443e-06,
715
+ "loss": 0.678,
716
+ "step": 500
717
+ },
718
+ {
719
+ "epoch": 0.20910973084886128,
720
+ "grad_norm": 3.0935315145303206,
721
+ "learning_rate": 9.642897283978157e-06,
722
+ "loss": 0.6699,
723
+ "step": 505
724
+ },
725
+ {
726
+ "epoch": 0.2111801242236025,
727
+ "grad_norm": 2.8949142000184396,
728
+ "learning_rate": 9.629362028320808e-06,
729
+ "loss": 0.6883,
730
+ "step": 510
731
+ },
732
+ {
733
+ "epoch": 0.21325051759834368,
734
+ "grad_norm": 2.7523262750257524,
735
+ "learning_rate": 9.615584870609809e-06,
736
+ "loss": 0.6906,
737
+ "step": 515
738
+ },
739
+ {
740
+ "epoch": 0.2153209109730849,
741
+ "grad_norm": 2.8266613600542474,
742
+ "learning_rate": 9.601566530754882e-06,
743
+ "loss": 0.6714,
744
+ "step": 520
745
+ },
746
+ {
747
+ "epoch": 0.21739130434782608,
748
+ "grad_norm": 2.7407909229675607,
749
+ "learning_rate": 9.587307741268452e-06,
750
+ "loss": 0.6741,
751
+ "step": 525
752
+ },
753
+ {
754
+ "epoch": 0.2194616977225673,
755
+ "grad_norm": 2.85692797255821,
756
+ "learning_rate": 9.572809247227366e-06,
757
+ "loss": 0.6869,
758
+ "step": 530
759
+ },
760
+ {
761
+ "epoch": 0.22153209109730848,
762
+ "grad_norm": 3.0795533589960327,
763
+ "learning_rate": 9.558071806233955e-06,
764
+ "loss": 0.6523,
765
+ "step": 535
766
+ },
767
+ {
768
+ "epoch": 0.2236024844720497,
769
+ "grad_norm": 3.0611844069540703,
770
+ "learning_rate": 9.54309618837646e-06,
771
+ "loss": 0.68,
772
+ "step": 540
773
+ },
774
+ {
775
+ "epoch": 0.22567287784679088,
776
+ "grad_norm": 2.835988286170059,
777
+ "learning_rate": 9.52788317618878e-06,
778
+ "loss": 0.6853,
779
+ "step": 545
780
+ },
781
+ {
782
+ "epoch": 0.2277432712215321,
783
+ "grad_norm": 2.7835609496718714,
784
+ "learning_rate": 9.512433564609578e-06,
785
+ "loss": 0.6555,
786
+ "step": 550
787
+ },
788
+ {
789
+ "epoch": 0.22981366459627328,
790
+ "grad_norm": 2.808940901509538,
791
+ "learning_rate": 9.496748160940762e-06,
792
+ "loss": 0.668,
793
+ "step": 555
794
+ },
795
+ {
796
+ "epoch": 0.2318840579710145,
797
+ "grad_norm": 2.714688284772169,
798
+ "learning_rate": 9.480827784805278e-06,
799
+ "loss": 0.6623,
800
+ "step": 560
801
+ },
802
+ {
803
+ "epoch": 0.23395445134575568,
804
+ "grad_norm": 2.8864412901700343,
805
+ "learning_rate": 9.464673268104299e-06,
806
+ "loss": 0.6474,
807
+ "step": 565
808
+ },
809
+ {
810
+ "epoch": 0.2360248447204969,
811
+ "grad_norm": 2.701727867973264,
812
+ "learning_rate": 9.448285454973739e-06,
813
+ "loss": 0.6619,
814
+ "step": 570
815
+ },
816
+ {
817
+ "epoch": 0.23809523809523808,
818
+ "grad_norm": 2.9859632562398715,
819
+ "learning_rate": 9.431665201740154e-06,
820
+ "loss": 0.6673,
821
+ "step": 575
822
+ },
823
+ {
824
+ "epoch": 0.2401656314699793,
825
+ "grad_norm": 2.702445930286614,
826
+ "learning_rate": 9.414813376876003e-06,
827
+ "loss": 0.64,
828
+ "step": 580
829
+ },
830
+ {
831
+ "epoch": 0.2422360248447205,
832
+ "grad_norm": 2.84928084374811,
833
+ "learning_rate": 9.397730860954242e-06,
834
+ "loss": 0.6611,
835
+ "step": 585
836
+ },
837
+ {
838
+ "epoch": 0.2443064182194617,
839
+ "grad_norm": 2.7099926341587484,
840
+ "learning_rate": 9.38041854660234e-06,
841
+ "loss": 0.6648,
842
+ "step": 590
843
+ },
844
+ {
845
+ "epoch": 0.2463768115942029,
846
+ "grad_norm": 2.60007554596025,
847
+ "learning_rate": 9.362877338455611e-06,
848
+ "loss": 0.6183,
849
+ "step": 595
850
+ },
851
+ {
852
+ "epoch": 0.2484472049689441,
853
+ "grad_norm": 2.846852340669187,
854
+ "learning_rate": 9.345108153109963e-06,
855
+ "loss": 0.6322,
856
+ "step": 600
857
+ },
858
+ {
859
+ "epoch": 0.2505175983436853,
860
+ "grad_norm": 2.6294782931340404,
861
+ "learning_rate": 9.327111919073988e-06,
862
+ "loss": 0.644,
863
+ "step": 605
864
+ },
865
+ {
866
+ "epoch": 0.2525879917184265,
867
+ "grad_norm": 3.0332486107737653,
868
+ "learning_rate": 9.308889576720453e-06,
869
+ "loss": 0.6454,
870
+ "step": 610
871
+ },
872
+ {
873
+ "epoch": 0.2546583850931677,
874
+ "grad_norm": 2.7542953723768098,
875
+ "learning_rate": 9.290442078237154e-06,
876
+ "loss": 0.6122,
877
+ "step": 615
878
+ },
879
+ {
880
+ "epoch": 0.2567287784679089,
881
+ "grad_norm": 2.7123354633572694,
882
+ "learning_rate": 9.271770387577168e-06,
883
+ "loss": 0.6313,
884
+ "step": 620
885
+ },
886
+ {
887
+ "epoch": 0.2587991718426501,
888
+ "grad_norm": 2.8410949470006424,
889
+ "learning_rate": 9.252875480408479e-06,
890
+ "loss": 0.6434,
891
+ "step": 625
892
+ },
893
+ {
894
+ "epoch": 0.2608695652173913,
895
+ "grad_norm": 2.8320923536012095,
896
+ "learning_rate": 9.233758344062996e-06,
897
+ "loss": 0.6339,
898
+ "step": 630
899
+ },
900
+ {
901
+ "epoch": 0.2629399585921325,
902
+ "grad_norm": 3.059074128048717,
903
+ "learning_rate": 9.21441997748496e-06,
904
+ "loss": 0.6227,
905
+ "step": 635
906
+ },
907
+ {
908
+ "epoch": 0.2650103519668737,
909
+ "grad_norm": 2.7546107516694343,
910
+ "learning_rate": 9.194861391178749e-06,
911
+ "loss": 0.6313,
912
+ "step": 640
913
+ },
914
+ {
915
+ "epoch": 0.2670807453416149,
916
+ "grad_norm": 2.785158104538987,
917
+ "learning_rate": 9.175083607156067e-06,
918
+ "loss": 0.6427,
919
+ "step": 645
920
+ },
921
+ {
922
+ "epoch": 0.2691511387163561,
923
+ "grad_norm": 2.519237303716458,
924
+ "learning_rate": 9.155087658882555e-06,
925
+ "loss": 0.634,
926
+ "step": 650
927
+ },
928
+ {
929
+ "epoch": 0.2712215320910973,
930
+ "grad_norm": 2.62906922660549,
931
+ "learning_rate": 9.134874591223773e-06,
932
+ "loss": 0.6202,
933
+ "step": 655
934
+ },
935
+ {
936
+ "epoch": 0.2732919254658385,
937
+ "grad_norm": 8.776521328405046,
938
+ "learning_rate": 9.114445460390605e-06,
939
+ "loss": 0.6359,
940
+ "step": 660
941
+ },
942
+ {
943
+ "epoch": 0.2753623188405797,
944
+ "grad_norm": 2.67193668011001,
945
+ "learning_rate": 9.093801333884076e-06,
946
+ "loss": 0.6279,
947
+ "step": 665
948
+ },
949
+ {
950
+ "epoch": 0.2774327122153209,
951
+ "grad_norm": 2.7070968852937134,
952
+ "learning_rate": 9.072943290439566e-06,
953
+ "loss": 0.6364,
954
+ "step": 670
955
+ },
956
+ {
957
+ "epoch": 0.2795031055900621,
958
+ "grad_norm": 2.613414279867121,
959
+ "learning_rate": 9.051872419970439e-06,
960
+ "loss": 0.6196,
961
+ "step": 675
962
+ },
963
+ {
964
+ "epoch": 0.2815734989648033,
965
+ "grad_norm": 2.8664991598537877,
966
+ "learning_rate": 9.03058982351109e-06,
967
+ "loss": 0.6066,
968
+ "step": 680
969
+ },
970
+ {
971
+ "epoch": 0.2836438923395445,
972
+ "grad_norm": 2.641252430207258,
973
+ "learning_rate": 9.009096613159426e-06,
974
+ "loss": 0.6093,
975
+ "step": 685
976
+ },
977
+ {
978
+ "epoch": 0.2857142857142857,
979
+ "grad_norm": 2.93725140870653,
980
+ "learning_rate": 8.987393912018732e-06,
981
+ "loss": 0.6183,
982
+ "step": 690
983
+ },
984
+ {
985
+ "epoch": 0.28778467908902694,
986
+ "grad_norm": 2.7035731768373314,
987
+ "learning_rate": 8.965482854139003e-06,
988
+ "loss": 0.5946,
989
+ "step": 695
990
+ },
991
+ {
992
+ "epoch": 0.2898550724637681,
993
+ "grad_norm": 2.7946358641447238,
994
+ "learning_rate": 8.943364584457675e-06,
995
+ "loss": 0.596,
996
+ "step": 700
997
+ },
998
+ {
999
+ "epoch": 0.2919254658385093,
1000
+ "grad_norm": 2.79245272627438,
1001
+ "learning_rate": 8.921040258739804e-06,
1002
+ "loss": 0.6038,
1003
+ "step": 705
1004
+ },
1005
+ {
1006
+ "epoch": 0.2939958592132505,
1007
+ "grad_norm": 2.807065308334584,
1008
+ "learning_rate": 8.898511043517668e-06,
1009
+ "loss": 0.6047,
1010
+ "step": 710
1011
+ },
1012
+ {
1013
+ "epoch": 0.29606625258799174,
1014
+ "grad_norm": 2.9178175401076354,
1015
+ "learning_rate": 8.875778116029816e-06,
1016
+ "loss": 0.5961,
1017
+ "step": 715
1018
+ },
1019
+ {
1020
+ "epoch": 0.2981366459627329,
1021
+ "grad_norm": 2.795866621933458,
1022
+ "learning_rate": 8.85284266415955e-06,
1023
+ "loss": 0.5999,
1024
+ "step": 720
1025
+ },
1026
+ {
1027
+ "epoch": 0.3002070393374741,
1028
+ "grad_norm": 2.661912145911008,
1029
+ "learning_rate": 8.829705886372845e-06,
1030
+ "loss": 0.6016,
1031
+ "step": 725
1032
+ },
1033
+ {
1034
+ "epoch": 0.3022774327122153,
1035
+ "grad_norm": 2.55928416799956,
1036
+ "learning_rate": 8.806368991655747e-06,
1037
+ "loss": 0.603,
1038
+ "step": 730
1039
+ },
1040
+ {
1041
+ "epoch": 0.30434782608695654,
1042
+ "grad_norm": 2.742096866025067,
1043
+ "learning_rate": 8.782833199451177e-06,
1044
+ "loss": 0.593,
1045
+ "step": 735
1046
+ },
1047
+ {
1048
+ "epoch": 0.3064182194616977,
1049
+ "grad_norm": 2.5488046049420694,
1050
+ "learning_rate": 8.759099739595215e-06,
1051
+ "loss": 0.5985,
1052
+ "step": 740
1053
+ },
1054
+ {
1055
+ "epoch": 0.3084886128364389,
1056
+ "grad_norm": 2.6637124391121567,
1057
+ "learning_rate": 8.735169852252848e-06,
1058
+ "loss": 0.5912,
1059
+ "step": 745
1060
+ },
1061
+ {
1062
+ "epoch": 0.3105590062111801,
1063
+ "grad_norm": 2.8576203296823017,
1064
+ "learning_rate": 8.71104478785315e-06,
1065
+ "loss": 0.5922,
1066
+ "step": 750
1067
+ },
1068
+ {
1069
+ "epoch": 0.31262939958592134,
1070
+ "grad_norm": 2.6109792985439486,
1071
+ "learning_rate": 8.686725807023955e-06,
1072
+ "loss": 0.5821,
1073
+ "step": 755
1074
+ },
1075
+ {
1076
+ "epoch": 0.3146997929606625,
1077
+ "grad_norm": 2.5680758470796254,
1078
+ "learning_rate": 8.662214180525982e-06,
1079
+ "loss": 0.5901,
1080
+ "step": 760
1081
+ },
1082
+ {
1083
+ "epoch": 0.3167701863354037,
1084
+ "grad_norm": 2.773059019392135,
1085
+ "learning_rate": 8.637511189186425e-06,
1086
+ "loss": 0.584,
1087
+ "step": 765
1088
+ },
1089
+ {
1090
+ "epoch": 0.3188405797101449,
1091
+ "grad_norm": 2.723807950487225,
1092
+ "learning_rate": 8.612618123832033e-06,
1093
+ "loss": 0.5637,
1094
+ "step": 770
1095
+ },
1096
+ {
1097
+ "epoch": 0.32091097308488614,
1098
+ "grad_norm": 2.719604774085743,
1099
+ "learning_rate": 8.587536285221656e-06,
1100
+ "loss": 0.593,
1101
+ "step": 775
1102
+ },
1103
+ {
1104
+ "epoch": 0.32298136645962733,
1105
+ "grad_norm": 2.6940868411607855,
1106
+ "learning_rate": 8.562266983978278e-06,
1107
+ "loss": 0.5808,
1108
+ "step": 780
1109
+ },
1110
+ {
1111
+ "epoch": 0.3250517598343685,
1112
+ "grad_norm": 2.71247751226207,
1113
+ "learning_rate": 8.536811540520529e-06,
1114
+ "loss": 0.5719,
1115
+ "step": 785
1116
+ },
1117
+ {
1118
+ "epoch": 0.32712215320910976,
1119
+ "grad_norm": 2.8315337603387327,
1120
+ "learning_rate": 8.511171284993686e-06,
1121
+ "loss": 0.5792,
1122
+ "step": 790
1123
+ },
1124
+ {
1125
+ "epoch": 0.32919254658385094,
1126
+ "grad_norm": 2.7344602885064035,
1127
+ "learning_rate": 8.485347557200177e-06,
1128
+ "loss": 0.5745,
1129
+ "step": 795
1130
+ },
1131
+ {
1132
+ "epoch": 0.33126293995859213,
1133
+ "grad_norm": 2.5600120348098225,
1134
+ "learning_rate": 8.459341706529557e-06,
1135
+ "loss": 0.5692,
1136
+ "step": 800
1137
+ },
1138
+ {
1139
+ "epoch": 0.3333333333333333,
1140
+ "grad_norm": 2.624179495038465,
1141
+ "learning_rate": 8.43315509188801e-06,
1142
+ "loss": 0.5931,
1143
+ "step": 805
1144
+ },
1145
+ {
1146
+ "epoch": 0.33540372670807456,
1147
+ "grad_norm": 2.680547730395255,
1148
+ "learning_rate": 8.406789081627337e-06,
1149
+ "loss": 0.5558,
1150
+ "step": 810
1151
+ },
1152
+ {
1153
+ "epoch": 0.33747412008281574,
1154
+ "grad_norm": 2.5218096483801746,
1155
+ "learning_rate": 8.380245053473452e-06,
1156
+ "loss": 0.5458,
1157
+ "step": 815
1158
+ },
1159
+ {
1160
+ "epoch": 0.33954451345755693,
1161
+ "grad_norm": 2.6618542869475323,
1162
+ "learning_rate": 8.353524394454388e-06,
1163
+ "loss": 0.5714,
1164
+ "step": 820
1165
+ },
1166
+ {
1167
+ "epoch": 0.3416149068322981,
1168
+ "grad_norm": 2.682552924118767,
1169
+ "learning_rate": 8.326628500827826e-06,
1170
+ "loss": 0.574,
1171
+ "step": 825
1172
+ },
1173
+ {
1174
+ "epoch": 0.34368530020703936,
1175
+ "grad_norm": 2.7546015850988432,
1176
+ "learning_rate": 8.299558778008137e-06,
1177
+ "loss": 0.5614,
1178
+ "step": 830
1179
+ },
1180
+ {
1181
+ "epoch": 0.34575569358178054,
1182
+ "grad_norm": 2.693315288346116,
1183
+ "learning_rate": 8.272316640492932e-06,
1184
+ "loss": 0.5606,
1185
+ "step": 835
1186
+ },
1187
+ {
1188
+ "epoch": 0.34782608695652173,
1189
+ "grad_norm": 2.6093176240781846,
1190
+ "learning_rate": 8.244903511789158e-06,
1191
+ "loss": 0.5674,
1192
+ "step": 840
1193
+ },
1194
+ {
1195
+ "epoch": 0.3498964803312629,
1196
+ "grad_norm": 3.0660262244457415,
1197
+ "learning_rate": 8.217320824338713e-06,
1198
+ "loss": 0.5678,
1199
+ "step": 845
1200
+ },
1201
+ {
1202
+ "epoch": 0.35196687370600416,
1203
+ "grad_norm": 2.601542138482762,
1204
+ "learning_rate": 8.189570019443597e-06,
1205
+ "loss": 0.5545,
1206
+ "step": 850
1207
+ },
1208
+ {
1209
+ "epoch": 0.35403726708074534,
1210
+ "grad_norm": 2.680496513220756,
1211
+ "learning_rate": 8.161652547190593e-06,
1212
+ "loss": 0.5505,
1213
+ "step": 855
1214
+ },
1215
+ {
1216
+ "epoch": 0.35610766045548653,
1217
+ "grad_norm": 2.71559115559276,
1218
+ "learning_rate": 8.133569866375497e-06,
1219
+ "loss": 0.5507,
1220
+ "step": 860
1221
+ },
1222
+ {
1223
+ "epoch": 0.3581780538302277,
1224
+ "grad_norm": 2.5491866007518174,
1225
+ "learning_rate": 8.105323444426891e-06,
1226
+ "loss": 0.5454,
1227
+ "step": 865
1228
+ },
1229
+ {
1230
+ "epoch": 0.36024844720496896,
1231
+ "grad_norm": 2.5929968996001964,
1232
+ "learning_rate": 8.076914757329467e-06,
1233
+ "loss": 0.5744,
1234
+ "step": 870
1235
+ },
1236
+ {
1237
+ "epoch": 0.36231884057971014,
1238
+ "grad_norm": 2.8545194694179257,
1239
+ "learning_rate": 8.048345289546895e-06,
1240
+ "loss": 0.5452,
1241
+ "step": 875
1242
+ },
1243
+ {
1244
+ "epoch": 0.36438923395445133,
1245
+ "grad_norm": 2.6374637614435263,
1246
+ "learning_rate": 8.01961653394426e-06,
1247
+ "loss": 0.5527,
1248
+ "step": 880
1249
+ },
1250
+ {
1251
+ "epoch": 0.36645962732919257,
1252
+ "grad_norm": 2.805538262703338,
1253
+ "learning_rate": 7.990729991710046e-06,
1254
+ "loss": 0.5275,
1255
+ "step": 885
1256
+ },
1257
+ {
1258
+ "epoch": 0.36853002070393376,
1259
+ "grad_norm": 2.600470832967854,
1260
+ "learning_rate": 7.9616871722777e-06,
1261
+ "loss": 0.5304,
1262
+ "step": 890
1263
+ },
1264
+ {
1265
+ "epoch": 0.37060041407867494,
1266
+ "grad_norm": 2.5695628696449133,
1267
+ "learning_rate": 7.932489593246764e-06,
1268
+ "loss": 0.5332,
1269
+ "step": 895
1270
+ },
1271
+ {
1272
+ "epoch": 0.37267080745341613,
1273
+ "grad_norm": 2.707737452763526,
1274
+ "learning_rate": 7.903138780303556e-06,
1275
+ "loss": 0.5663,
1276
+ "step": 900
1277
+ },
1278
+ {
1279
+ "epoch": 0.3747412008281574,
1280
+ "grad_norm": 2.6330755439053575,
1281
+ "learning_rate": 7.873636267141463e-06,
1282
+ "loss": 0.5398,
1283
+ "step": 905
1284
+ },
1285
+ {
1286
+ "epoch": 0.37681159420289856,
1287
+ "grad_norm": 2.629184440328501,
1288
+ "learning_rate": 7.843983595380793e-06,
1289
+ "loss": 0.5407,
1290
+ "step": 910
1291
+ },
1292
+ {
1293
+ "epoch": 0.37888198757763975,
1294
+ "grad_norm": 2.523570743421866,
1295
+ "learning_rate": 7.814182314488225e-06,
1296
+ "loss": 0.5339,
1297
+ "step": 915
1298
+ },
1299
+ {
1300
+ "epoch": 0.38095238095238093,
1301
+ "grad_norm": 2.5767883541234293,
1302
+ "learning_rate": 7.784233981695835e-06,
1303
+ "loss": 0.5333,
1304
+ "step": 920
1305
+ },
1306
+ {
1307
+ "epoch": 0.3830227743271222,
1308
+ "grad_norm": 2.4631684405639267,
1309
+ "learning_rate": 7.754140161919732e-06,
1310
+ "loss": 0.5253,
1311
+ "step": 925
1312
+ },
1313
+ {
1314
+ "epoch": 0.38509316770186336,
1315
+ "grad_norm": 2.501412257400789,
1316
+ "learning_rate": 7.72390242767828e-06,
1317
+ "loss": 0.5247,
1318
+ "step": 930
1319
+ },
1320
+ {
1321
+ "epoch": 0.38716356107660455,
1322
+ "grad_norm": 2.7412684154036233,
1323
+ "learning_rate": 7.693522359009931e-06,
1324
+ "loss": 0.5304,
1325
+ "step": 935
1326
+ },
1327
+ {
1328
+ "epoch": 0.38923395445134573,
1329
+ "grad_norm": 2.519374343070241,
1330
+ "learning_rate": 7.663001543390657e-06,
1331
+ "loss": 0.5178,
1332
+ "step": 940
1333
+ },
1334
+ {
1335
+ "epoch": 0.391304347826087,
1336
+ "grad_norm": 2.659503227676441,
1337
+ "learning_rate": 7.63234157565101e-06,
1338
+ "loss": 0.504,
1339
+ "step": 945
1340
+ },
1341
+ {
1342
+ "epoch": 0.39337474120082816,
1343
+ "grad_norm": 2.6028733871149337,
1344
+ "learning_rate": 7.601544057892769e-06,
1345
+ "loss": 0.5281,
1346
+ "step": 950
1347
+ },
1348
+ {
1349
+ "epoch": 0.39544513457556935,
1350
+ "grad_norm": 2.6684608680601425,
1351
+ "learning_rate": 7.570610599405242e-06,
1352
+ "loss": 0.5289,
1353
+ "step": 955
1354
+ },
1355
+ {
1356
+ "epoch": 0.39751552795031053,
1357
+ "grad_norm": 2.580954402164553,
1358
+ "learning_rate": 7.539542816581157e-06,
1359
+ "loss": 0.5243,
1360
+ "step": 960
1361
+ },
1362
+ {
1363
+ "epoch": 0.3995859213250518,
1364
+ "grad_norm": 2.656105021997607,
1365
+ "learning_rate": 7.508342332832213e-06,
1366
+ "loss": 0.5337,
1367
+ "step": 965
1368
+ },
1369
+ {
1370
+ "epoch": 0.40165631469979296,
1371
+ "grad_norm": 2.5689808051046885,
1372
+ "learning_rate": 7.477010778504241e-06,
1373
+ "loss": 0.5244,
1374
+ "step": 970
1375
+ },
1376
+ {
1377
+ "epoch": 0.40372670807453415,
1378
+ "grad_norm": 2.660859162384531,
1379
+ "learning_rate": 7.445549790792021e-06,
1380
+ "loss": 0.5249,
1381
+ "step": 975
1382
+ },
1383
+ {
1384
+ "epoch": 0.4057971014492754,
1385
+ "grad_norm": 2.5110342843182645,
1386
+ "learning_rate": 7.413961013653725e-06,
1387
+ "loss": 0.529,
1388
+ "step": 980
1389
+ },
1390
+ {
1391
+ "epoch": 0.4078674948240166,
1392
+ "grad_norm": 2.6278595424042757,
1393
+ "learning_rate": 7.3822460977250145e-06,
1394
+ "loss": 0.508,
1395
+ "step": 985
1396
+ },
1397
+ {
1398
+ "epoch": 0.40993788819875776,
1399
+ "grad_norm": 2.570820560507206,
1400
+ "learning_rate": 7.350406700232794e-06,
1401
+ "loss": 0.5135,
1402
+ "step": 990
1403
+ },
1404
+ {
1405
+ "epoch": 0.41200828157349895,
1406
+ "grad_norm": 2.4853904047248876,
1407
+ "learning_rate": 7.318444484908606e-06,
1408
+ "loss": 0.515,
1409
+ "step": 995
1410
+ },
1411
+ {
1412
+ "epoch": 0.4140786749482402,
1413
+ "grad_norm": 2.544205959165577,
1414
+ "learning_rate": 7.286361121901706e-06,
1415
+ "loss": 0.5141,
1416
+ "step": 1000
1417
+ },
1418
+ {
1419
+ "epoch": 0.4161490683229814,
1420
+ "grad_norm": 2.750413997685881,
1421
+ "learning_rate": 7.254158287691775e-06,
1422
+ "loss": 0.5058,
1423
+ "step": 1005
1424
+ },
1425
+ {
1426
+ "epoch": 0.41821946169772256,
1427
+ "grad_norm": 2.4471491822679905,
1428
+ "learning_rate": 7.221837665001335e-06,
1429
+ "loss": 0.508,
1430
+ "step": 1010
1431
+ },
1432
+ {
1433
+ "epoch": 0.42028985507246375,
1434
+ "grad_norm": 2.569088939282542,
1435
+ "learning_rate": 7.189400942707804e-06,
1436
+ "loss": 0.5008,
1437
+ "step": 1015
1438
+ },
1439
+ {
1440
+ "epoch": 0.422360248447205,
1441
+ "grad_norm": 2.58098669010246,
1442
+ "learning_rate": 7.1568498157552576e-06,
1443
+ "loss": 0.5122,
1444
+ "step": 1020
1445
+ },
1446
+ {
1447
+ "epoch": 0.4244306418219462,
1448
+ "grad_norm": 2.5507810903416748,
1449
+ "learning_rate": 7.124185985065856e-06,
1450
+ "loss": 0.4997,
1451
+ "step": 1025
1452
+ },
1453
+ {
1454
+ "epoch": 0.42650103519668736,
1455
+ "grad_norm": 2.640859603851859,
1456
+ "learning_rate": 7.091411157450965e-06,
1457
+ "loss": 0.5063,
1458
+ "step": 1030
1459
+ },
1460
+ {
1461
+ "epoch": 0.42857142857142855,
1462
+ "grad_norm": 2.5916583011234753,
1463
+ "learning_rate": 7.0585270455219654e-06,
1464
+ "loss": 0.5004,
1465
+ "step": 1035
1466
+ },
1467
+ {
1468
+ "epoch": 0.4306418219461698,
1469
+ "grad_norm": 2.5837013370937907,
1470
+ "learning_rate": 7.025535367600771e-06,
1471
+ "loss": 0.5131,
1472
+ "step": 1040
1473
+ },
1474
+ {
1475
+ "epoch": 0.432712215320911,
1476
+ "grad_norm": 2.4630480113570243,
1477
+ "learning_rate": 6.992437847630031e-06,
1478
+ "loss": 0.4833,
1479
+ "step": 1045
1480
+ },
1481
+ {
1482
+ "epoch": 0.43478260869565216,
1483
+ "grad_norm": 2.6336472266054725,
1484
+ "learning_rate": 6.95923621508305e-06,
1485
+ "loss": 0.4843,
1486
+ "step": 1050
1487
+ },
1488
+ {
1489
+ "epoch": 0.43685300207039335,
1490
+ "grad_norm": 2.5354926775279996,
1491
+ "learning_rate": 6.92593220487342e-06,
1492
+ "loss": 0.4896,
1493
+ "step": 1055
1494
+ },
1495
+ {
1496
+ "epoch": 0.4389233954451346,
1497
+ "grad_norm": 2.571259522555512,
1498
+ "learning_rate": 6.892527557264358e-06,
1499
+ "loss": 0.5064,
1500
+ "step": 1060
1501
+ },
1502
+ {
1503
+ "epoch": 0.4409937888198758,
1504
+ "grad_norm": 2.645183661888645,
1505
+ "learning_rate": 6.859024017777779e-06,
1506
+ "loss": 0.5047,
1507
+ "step": 1065
1508
+ },
1509
+ {
1510
+ "epoch": 0.44306418219461696,
1511
+ "grad_norm": 2.469286466558817,
1512
+ "learning_rate": 6.825423337103074e-06,
1513
+ "loss": 0.4955,
1514
+ "step": 1070
1515
+ },
1516
+ {
1517
+ "epoch": 0.4451345755693582,
1518
+ "grad_norm": 2.5492415232980457,
1519
+ "learning_rate": 6.791727271005642e-06,
1520
+ "loss": 0.4947,
1521
+ "step": 1075
1522
+ },
1523
+ {
1524
+ "epoch": 0.4472049689440994,
1525
+ "grad_norm": 2.6201976455165155,
1526
+ "learning_rate": 6.757937580235138e-06,
1527
+ "loss": 0.4938,
1528
+ "step": 1080
1529
+ },
1530
+ {
1531
+ "epoch": 0.4492753623188406,
1532
+ "grad_norm": 2.6040132677270167,
1533
+ "learning_rate": 6.724056030433464e-06,
1534
+ "loss": 0.495,
1535
+ "step": 1085
1536
+ },
1537
+ {
1538
+ "epoch": 0.45134575569358176,
1539
+ "grad_norm": 2.4219926979901576,
1540
+ "learning_rate": 6.690084392042514e-06,
1541
+ "loss": 0.4821,
1542
+ "step": 1090
1543
+ },
1544
+ {
1545
+ "epoch": 0.453416149068323,
1546
+ "grad_norm": 2.629031701175065,
1547
+ "learning_rate": 6.656024440211662e-06,
1548
+ "loss": 0.4842,
1549
+ "step": 1095
1550
+ },
1551
+ {
1552
+ "epoch": 0.4554865424430642,
1553
+ "grad_norm": 2.4715473741738427,
1554
+ "learning_rate": 6.621877954704996e-06,
1555
+ "loss": 0.4877,
1556
+ "step": 1100
1557
+ },
1558
+ {
1559
+ "epoch": 0.4575569358178054,
1560
+ "grad_norm": 2.6497148727345903,
1561
+ "learning_rate": 6.5876467198083235e-06,
1562
+ "loss": 0.4904,
1563
+ "step": 1105
1564
+ },
1565
+ {
1566
+ "epoch": 0.45962732919254656,
1567
+ "grad_norm": 2.529203852840936,
1568
+ "learning_rate": 6.553332524235937e-06,
1569
+ "loss": 0.4707,
1570
+ "step": 1110
1571
+ },
1572
+ {
1573
+ "epoch": 0.4616977225672878,
1574
+ "grad_norm": 2.565462399734998,
1575
+ "learning_rate": 6.518937161037144e-06,
1576
+ "loss": 0.4908,
1577
+ "step": 1115
1578
+ },
1579
+ {
1580
+ "epoch": 0.463768115942029,
1581
+ "grad_norm": 2.5253689137313704,
1582
+ "learning_rate": 6.484462427502572e-06,
1583
+ "loss": 0.482,
1584
+ "step": 1120
1585
+ },
1586
+ {
1587
+ "epoch": 0.4658385093167702,
1588
+ "grad_norm": 2.7298927082155497,
1589
+ "learning_rate": 6.44991012507026e-06,
1590
+ "loss": 0.4635,
1591
+ "step": 1125
1592
+ },
1593
+ {
1594
+ "epoch": 0.46790890269151136,
1595
+ "grad_norm": 2.4968057887779542,
1596
+ "learning_rate": 6.415282059231518e-06,
1597
+ "loss": 0.4734,
1598
+ "step": 1130
1599
+ },
1600
+ {
1601
+ "epoch": 0.4699792960662526,
1602
+ "grad_norm": 2.558749462242469,
1603
+ "learning_rate": 6.380580039436586e-06,
1604
+ "loss": 0.4724,
1605
+ "step": 1135
1606
+ },
1607
+ {
1608
+ "epoch": 0.4720496894409938,
1609
+ "grad_norm": 2.6054561174991475,
1610
+ "learning_rate": 6.345805879000087e-06,
1611
+ "loss": 0.4804,
1612
+ "step": 1140
1613
+ },
1614
+ {
1615
+ "epoch": 0.474120082815735,
1616
+ "grad_norm": 2.4181929103768782,
1617
+ "learning_rate": 6.31096139500627e-06,
1618
+ "loss": 0.4653,
1619
+ "step": 1145
1620
+ },
1621
+ {
1622
+ "epoch": 0.47619047619047616,
1623
+ "grad_norm": 2.6283847623760046,
1624
+ "learning_rate": 6.2760484082140604e-06,
1625
+ "loss": 0.4777,
1626
+ "step": 1150
1627
+ },
1628
+ {
1629
+ "epoch": 0.4782608695652174,
1630
+ "grad_norm": 2.4346152969867987,
1631
+ "learning_rate": 6.24106874296192e-06,
1632
+ "loss": 0.4504,
1633
+ "step": 1155
1634
+ },
1635
+ {
1636
+ "epoch": 0.4803312629399586,
1637
+ "grad_norm": 2.526644880284406,
1638
+ "learning_rate": 6.20602422707252e-06,
1639
+ "loss": 0.4736,
1640
+ "step": 1160
1641
+ },
1642
+ {
1643
+ "epoch": 0.4824016563146998,
1644
+ "grad_norm": 2.53799587618545,
1645
+ "learning_rate": 6.1709166917572264e-06,
1646
+ "loss": 0.4795,
1647
+ "step": 1165
1648
+ },
1649
+ {
1650
+ "epoch": 0.484472049689441,
1651
+ "grad_norm": 2.3638682374352173,
1652
+ "learning_rate": 6.135747971520412e-06,
1653
+ "loss": 0.4698,
1654
+ "step": 1170
1655
+ },
1656
+ {
1657
+ "epoch": 0.4865424430641822,
1658
+ "grad_norm": 2.460720323189321,
1659
+ "learning_rate": 6.100519904063597e-06,
1660
+ "loss": 0.465,
1661
+ "step": 1175
1662
+ },
1663
+ {
1664
+ "epoch": 0.4886128364389234,
1665
+ "grad_norm": 2.5958597363625584,
1666
+ "learning_rate": 6.0652343301894345e-06,
1667
+ "loss": 0.4804,
1668
+ "step": 1180
1669
+ },
1670
+ {
1671
+ "epoch": 0.4906832298136646,
1672
+ "grad_norm": 2.66548966977513,
1673
+ "learning_rate": 6.029893093705492e-06,
1674
+ "loss": 0.4529,
1675
+ "step": 1185
1676
+ },
1677
+ {
1678
+ "epoch": 0.4927536231884058,
1679
+ "grad_norm": 2.702340679280387,
1680
+ "learning_rate": 5.99449804132794e-06,
1681
+ "loss": 0.4577,
1682
+ "step": 1190
1683
+ },
1684
+ {
1685
+ "epoch": 0.494824016563147,
1686
+ "grad_norm": 2.45914300253678,
1687
+ "learning_rate": 5.959051022585025e-06,
1688
+ "loss": 0.4577,
1689
+ "step": 1195
1690
+ },
1691
+ {
1692
+ "epoch": 0.4968944099378882,
1693
+ "grad_norm": 2.630887103863114,
1694
+ "learning_rate": 5.923553889720447e-06,
1695
+ "loss": 0.4776,
1696
+ "step": 1200
1697
+ },
1698
+ {
1699
+ "epoch": 0.4989648033126294,
1700
+ "grad_norm": 2.5737488710043213,
1701
+ "learning_rate": 5.888008497596553e-06,
1702
+ "loss": 0.4704,
1703
+ "step": 1205
1704
+ },
1705
+ {
1706
+ "epoch": 0.5010351966873706,
1707
+ "grad_norm": 2.642459617063942,
1708
+ "learning_rate": 5.852416703597431e-06,
1709
+ "loss": 0.4723,
1710
+ "step": 1210
1711
+ },
1712
+ {
1713
+ "epoch": 0.5031055900621118,
1714
+ "grad_norm": 2.4855448696474767,
1715
+ "learning_rate": 5.816780367531841e-06,
1716
+ "loss": 0.4566,
1717
+ "step": 1215
1718
+ },
1719
+ {
1720
+ "epoch": 0.505175983436853,
1721
+ "grad_norm": 2.6308877301818083,
1722
+ "learning_rate": 5.781101351536041e-06,
1723
+ "loss": 0.4642,
1724
+ "step": 1220
1725
+ },
1726
+ {
1727
+ "epoch": 0.5072463768115942,
1728
+ "grad_norm": 2.3851591122343687,
1729
+ "learning_rate": 5.745381519976477e-06,
1730
+ "loss": 0.4683,
1731
+ "step": 1225
1732
+ },
1733
+ {
1734
+ "epoch": 0.5093167701863354,
1735
+ "grad_norm": 2.707845768280749,
1736
+ "learning_rate": 5.7096227393523716e-06,
1737
+ "loss": 0.4617,
1738
+ "step": 1230
1739
+ },
1740
+ {
1741
+ "epoch": 0.5113871635610766,
1742
+ "grad_norm": 2.519861478183832,
1743
+ "learning_rate": 5.673826878198181e-06,
1744
+ "loss": 0.4417,
1745
+ "step": 1235
1746
+ },
1747
+ {
1748
+ "epoch": 0.5134575569358178,
1749
+ "grad_norm": 2.4813956531185153,
1750
+ "learning_rate": 5.637995806985961e-06,
1751
+ "loss": 0.4547,
1752
+ "step": 1240
1753
+ },
1754
+ {
1755
+ "epoch": 0.515527950310559,
1756
+ "grad_norm": 2.5303176264976357,
1757
+ "learning_rate": 5.602131398027637e-06,
1758
+ "loss": 0.4457,
1759
+ "step": 1245
1760
+ },
1761
+ {
1762
+ "epoch": 0.5175983436853002,
1763
+ "grad_norm": 2.578815009552858,
1764
+ "learning_rate": 5.566235525377155e-06,
1765
+ "loss": 0.4676,
1766
+ "step": 1250
1767
+ },
1768
+ {
1769
+ "epoch": 0.5196687370600414,
1770
+ "grad_norm": 2.436584983948615,
1771
+ "learning_rate": 5.530310064732559e-06,
1772
+ "loss": 0.4462,
1773
+ "step": 1255
1774
+ },
1775
+ {
1776
+ "epoch": 0.5217391304347826,
1777
+ "grad_norm": 2.6753470832060193,
1778
+ "learning_rate": 5.494356893337985e-06,
1779
+ "loss": 0.4458,
1780
+ "step": 1260
1781
+ },
1782
+ {
1783
+ "epoch": 0.5238095238095238,
1784
+ "grad_norm": 2.46988695395891,
1785
+ "learning_rate": 5.4583778898855576e-06,
1786
+ "loss": 0.4412,
1787
+ "step": 1265
1788
+ },
1789
+ {
1790
+ "epoch": 0.525879917184265,
1791
+ "grad_norm": 2.4718187832098875,
1792
+ "learning_rate": 5.422374934417228e-06,
1793
+ "loss": 0.4459,
1794
+ "step": 1270
1795
+ },
1796
+ {
1797
+ "epoch": 0.5279503105590062,
1798
+ "grad_norm": 2.488115607824269,
1799
+ "learning_rate": 5.386349908226538e-06,
1800
+ "loss": 0.4402,
1801
+ "step": 1275
1802
+ },
1803
+ {
1804
+ "epoch": 0.5300207039337475,
1805
+ "grad_norm": 2.6040039995460855,
1806
+ "learning_rate": 5.350304693760301e-06,
1807
+ "loss": 0.4527,
1808
+ "step": 1280
1809
+ },
1810
+ {
1811
+ "epoch": 0.5320910973084886,
1812
+ "grad_norm": 2.564562451871434,
1813
+ "learning_rate": 5.314241174520251e-06,
1814
+ "loss": 0.4444,
1815
+ "step": 1285
1816
+ },
1817
+ {
1818
+ "epoch": 0.5341614906832298,
1819
+ "grad_norm": 2.540617138455307,
1820
+ "learning_rate": 5.2781612349646175e-06,
1821
+ "loss": 0.432,
1822
+ "step": 1290
1823
+ },
1824
+ {
1825
+ "epoch": 0.5362318840579711,
1826
+ "grad_norm": 2.5068443392119675,
1827
+ "learning_rate": 5.242066760409653e-06,
1828
+ "loss": 0.4508,
1829
+ "step": 1295
1830
+ },
1831
+ {
1832
+ "epoch": 0.5383022774327122,
1833
+ "grad_norm": 2.6199384954342255,
1834
+ "learning_rate": 5.205959636931121e-06,
1835
+ "loss": 0.45,
1836
+ "step": 1300
1837
+ },
1838
+ {
1839
+ "epoch": 0.5403726708074534,
1840
+ "grad_norm": 2.3921563239272468,
1841
+ "learning_rate": 5.169841751265738e-06,
1842
+ "loss": 0.4225,
1843
+ "step": 1305
1844
+ },
1845
+ {
1846
+ "epoch": 0.5424430641821946,
1847
+ "grad_norm": 2.5822600397309516,
1848
+ "learning_rate": 5.13371499071259e-06,
1849
+ "loss": 0.4359,
1850
+ "step": 1310
1851
+ },
1852
+ {
1853
+ "epoch": 0.5445134575569358,
1854
+ "grad_norm": 2.4411351270519375,
1855
+ "learning_rate": 5.09758124303451e-06,
1856
+ "loss": 0.4386,
1857
+ "step": 1315
1858
+ },
1859
+ {
1860
+ "epoch": 0.546583850931677,
1861
+ "grad_norm": 2.3525010597630076,
1862
+ "learning_rate": 5.0614423963594295e-06,
1863
+ "loss": 0.4259,
1864
+ "step": 1320
1865
+ },
1866
+ {
1867
+ "epoch": 0.5486542443064182,
1868
+ "grad_norm": 2.597248272707148,
1869
+ "learning_rate": 5.0253003390817264e-06,
1870
+ "loss": 0.4368,
1871
+ "step": 1325
1872
+ },
1873
+ {
1874
+ "epoch": 0.5507246376811594,
1875
+ "grad_norm": 2.7667455072332667,
1876
+ "learning_rate": 4.989156959763551e-06,
1877
+ "loss": 0.4282,
1878
+ "step": 1330
1879
+ },
1880
+ {
1881
+ "epoch": 0.5527950310559007,
1882
+ "grad_norm": 2.5638911790116996,
1883
+ "learning_rate": 4.953014147036121e-06,
1884
+ "loss": 0.4311,
1885
+ "step": 1335
1886
+ },
1887
+ {
1888
+ "epoch": 0.5548654244306418,
1889
+ "grad_norm": 2.438552616930726,
1890
+ "learning_rate": 4.9168737895010615e-06,
1891
+ "loss": 0.4331,
1892
+ "step": 1340
1893
+ },
1894
+ {
1895
+ "epoch": 0.556935817805383,
1896
+ "grad_norm": 2.4621791786870073,
1897
+ "learning_rate": 4.880737775631698e-06,
1898
+ "loss": 0.4266,
1899
+ "step": 1345
1900
+ },
1901
+ {
1902
+ "epoch": 0.5590062111801242,
1903
+ "grad_norm": 2.4126817538417376,
1904
+ "learning_rate": 4.844607993674382e-06,
1905
+ "loss": 0.427,
1906
+ "step": 1350
1907
+ },
1908
+ {
1909
+ "epoch": 0.5610766045548654,
1910
+ "grad_norm": 2.3616856968719557,
1911
+ "learning_rate": 4.808486331549824e-06,
1912
+ "loss": 0.4296,
1913
+ "step": 1355
1914
+ },
1915
+ {
1916
+ "epoch": 0.5631469979296067,
1917
+ "grad_norm": 2.460116527100817,
1918
+ "learning_rate": 4.772374676754444e-06,
1919
+ "loss": 0.4264,
1920
+ "step": 1360
1921
+ },
1922
+ {
1923
+ "epoch": 0.5652173913043478,
1924
+ "grad_norm": 2.461765468947944,
1925
+ "learning_rate": 4.736274916261741e-06,
1926
+ "loss": 0.431,
1927
+ "step": 1365
1928
+ },
1929
+ {
1930
+ "epoch": 0.567287784679089,
1931
+ "grad_norm": 2.3783642292234384,
1932
+ "learning_rate": 4.700188936423683e-06,
1933
+ "loss": 0.4234,
1934
+ "step": 1370
1935
+ },
1936
+ {
1937
+ "epoch": 0.5693581780538303,
1938
+ "grad_norm": 2.355313906431993,
1939
+ "learning_rate": 4.664118622872157e-06,
1940
+ "loss": 0.437,
1941
+ "step": 1375
1942
+ },
1943
+ {
1944
+ "epoch": 0.5714285714285714,
1945
+ "grad_norm": 2.475468685556764,
1946
+ "learning_rate": 4.628065860420417e-06,
1947
+ "loss": 0.4242,
1948
+ "step": 1380
1949
+ },
1950
+ {
1951
+ "epoch": 0.5734989648033126,
1952
+ "grad_norm": 2.4672709194920945,
1953
+ "learning_rate": 4.592032532964611e-06,
1954
+ "loss": 0.438,
1955
+ "step": 1385
1956
+ },
1957
+ {
1958
+ "epoch": 0.5755693581780539,
1959
+ "grad_norm": 2.400293343212344,
1960
+ "learning_rate": 4.556020523385326e-06,
1961
+ "loss": 0.42,
1962
+ "step": 1390
1963
+ },
1964
+ {
1965
+ "epoch": 0.577639751552795,
1966
+ "grad_norm": 2.449404289410476,
1967
+ "learning_rate": 4.520031713449215e-06,
1968
+ "loss": 0.4063,
1969
+ "step": 1395
1970
+ },
1971
+ {
1972
+ "epoch": 0.5797101449275363,
1973
+ "grad_norm": 2.324896626756316,
1974
+ "learning_rate": 4.484067983710653e-06,
1975
+ "loss": 0.4187,
1976
+ "step": 1400
1977
+ },
1978
+ {
1979
+ "epoch": 0.5817805383022774,
1980
+ "grad_norm": 2.5021116418161387,
1981
+ "learning_rate": 4.448131213413485e-06,
1982
+ "loss": 0.4247,
1983
+ "step": 1405
1984
+ },
1985
+ {
1986
+ "epoch": 0.5838509316770186,
1987
+ "grad_norm": 2.5924308849874205,
1988
+ "learning_rate": 4.4122232803928145e-06,
1989
+ "loss": 0.4193,
1990
+ "step": 1410
1991
+ },
1992
+ {
1993
+ "epoch": 0.5859213250517599,
1994
+ "grad_norm": 2.3873380861073437,
1995
+ "learning_rate": 4.376346060976888e-06,
1996
+ "loss": 0.4052,
1997
+ "step": 1415
1998
+ },
1999
+ {
2000
+ "epoch": 0.587991718426501,
2001
+ "grad_norm": 2.463768787838596,
2002
+ "learning_rate": 4.340501429889053e-06,
2003
+ "loss": 0.4245,
2004
+ "step": 1420
2005
+ },
2006
+ {
2007
+ "epoch": 0.5900621118012422,
2008
+ "grad_norm": 2.2860972698262496,
2009
+ "learning_rate": 4.30469126014978e-06,
2010
+ "loss": 0.4153,
2011
+ "step": 1425
2012
+ },
2013
+ {
2014
+ "epoch": 0.5921325051759835,
2015
+ "grad_norm": 2.4871075210675597,
2016
+ "learning_rate": 4.268917422978811e-06,
2017
+ "loss": 0.4077,
2018
+ "step": 1430
2019
+ },
2020
+ {
2021
+ "epoch": 0.5942028985507246,
2022
+ "grad_norm": 2.4904076368286896,
2023
+ "learning_rate": 4.233181787697364e-06,
2024
+ "loss": 0.4256,
2025
+ "step": 1435
2026
+ },
2027
+ {
2028
+ "epoch": 0.5962732919254659,
2029
+ "grad_norm": 2.2742029323016193,
2030
+ "learning_rate": 4.197486221630467e-06,
2031
+ "loss": 0.4219,
2032
+ "step": 1440
2033
+ },
2034
+ {
2035
+ "epoch": 0.598343685300207,
2036
+ "grad_norm": 2.3406912575365197,
2037
+ "learning_rate": 4.161832590009371e-06,
2038
+ "loss": 0.4143,
2039
+ "step": 1445
2040
+ },
2041
+ {
2042
+ "epoch": 0.6004140786749482,
2043
+ "grad_norm": 2.4141594569450597,
2044
+ "learning_rate": 4.1262227558740915e-06,
2045
+ "loss": 0.4141,
2046
+ "step": 1450
2047
+ },
2048
+ {
2049
+ "epoch": 0.6024844720496895,
2050
+ "grad_norm": 2.3987457790948126,
2051
+ "learning_rate": 4.090658579976058e-06,
2052
+ "loss": 0.4007,
2053
+ "step": 1455
2054
+ },
2055
+ {
2056
+ "epoch": 0.6045548654244306,
2057
+ "grad_norm": 2.369365793426951,
2058
+ "learning_rate": 4.055141920680883e-06,
2059
+ "loss": 0.4004,
2060
+ "step": 1460
2061
+ },
2062
+ {
2063
+ "epoch": 0.6066252587991718,
2064
+ "grad_norm": 2.4192836777887874,
2065
+ "learning_rate": 4.019674633871246e-06,
2066
+ "loss": 0.4019,
2067
+ "step": 1465
2068
+ },
2069
+ {
2070
+ "epoch": 0.6086956521739131,
2071
+ "grad_norm": 2.422293912807025,
2072
+ "learning_rate": 3.984258572849926e-06,
2073
+ "loss": 0.411,
2074
+ "step": 1470
2075
+ },
2076
+ {
2077
+ "epoch": 0.6107660455486542,
2078
+ "grad_norm": 2.3117305367025756,
2079
+ "learning_rate": 3.9488955882429605e-06,
2080
+ "loss": 0.3967,
2081
+ "step": 1475
2082
+ },
2083
+ {
2084
+ "epoch": 0.6128364389233955,
2085
+ "grad_norm": 2.578467608284442,
2086
+ "learning_rate": 3.9135875279029366e-06,
2087
+ "loss": 0.4143,
2088
+ "step": 1480
2089
+ },
2090
+ {
2091
+ "epoch": 0.6149068322981367,
2092
+ "grad_norm": 2.455925307040979,
2093
+ "learning_rate": 3.878336236812432e-06,
2094
+ "loss": 0.4036,
2095
+ "step": 1485
2096
+ },
2097
+ {
2098
+ "epoch": 0.6169772256728778,
2099
+ "grad_norm": 2.4003915989485805,
2100
+ "learning_rate": 3.84314355698762e-06,
2101
+ "loss": 0.3966,
2102
+ "step": 1490
2103
+ },
2104
+ {
2105
+ "epoch": 0.6190476190476191,
2106
+ "grad_norm": 2.34779098734652,
2107
+ "learning_rate": 3.8080113273820024e-06,
2108
+ "loss": 0.3924,
2109
+ "step": 1495
2110
+ },
2111
+ {
2112
+ "epoch": 0.6211180124223602,
2113
+ "grad_norm": 2.4786298276436365,
2114
+ "learning_rate": 3.7729413837903285e-06,
2115
+ "loss": 0.3975,
2116
+ "step": 1500
2117
+ },
2118
+ {
2119
+ "epoch": 0.6231884057971014,
2120
+ "grad_norm": 2.4104863082788452,
2121
+ "learning_rate": 3.7379355587526543e-06,
2122
+ "loss": 0.398,
2123
+ "step": 1505
2124
+ },
2125
+ {
2126
+ "epoch": 0.6252587991718427,
2127
+ "grad_norm": 2.4123648264663,
2128
+ "learning_rate": 3.702995681458605e-06,
2129
+ "loss": 0.3882,
2130
+ "step": 1510
2131
+ },
2132
+ {
2133
+ "epoch": 0.6273291925465838,
2134
+ "grad_norm": 2.588148178298002,
2135
+ "learning_rate": 3.668123577651773e-06,
2136
+ "loss": 0.395,
2137
+ "step": 1515
2138
+ },
2139
+ {
2140
+ "epoch": 0.629399585921325,
2141
+ "grad_norm": 2.353179982037503,
2142
+ "learning_rate": 3.633321069534325e-06,
2143
+ "loss": 0.391,
2144
+ "step": 1520
2145
+ },
2146
+ {
2147
+ "epoch": 0.6314699792960663,
2148
+ "grad_norm": 2.3563480016131004,
2149
+ "learning_rate": 3.5985899756717872e-06,
2150
+ "loss": 0.3923,
2151
+ "step": 1525
2152
+ },
2153
+ {
2154
+ "epoch": 0.6335403726708074,
2155
+ "grad_norm": 2.352308073230629,
2156
+ "learning_rate": 3.563932110898015e-06,
2157
+ "loss": 0.401,
2158
+ "step": 1530
2159
+ },
2160
+ {
2161
+ "epoch": 0.6356107660455487,
2162
+ "grad_norm": 2.5237027304693482,
2163
+ "learning_rate": 3.5293492862203595e-06,
2164
+ "loss": 0.4018,
2165
+ "step": 1535
2166
+ },
2167
+ {
2168
+ "epoch": 0.6376811594202898,
2169
+ "grad_norm": 2.44013503338041,
2170
+ "learning_rate": 3.494843308725032e-06,
2171
+ "loss": 0.395,
2172
+ "step": 1540
2173
+ },
2174
+ {
2175
+ "epoch": 0.639751552795031,
2176
+ "grad_norm": 2.382891312283338,
2177
+ "learning_rate": 3.460415981482691e-06,
2178
+ "loss": 0.3926,
2179
+ "step": 1545
2180
+ },
2181
+ {
2182
+ "epoch": 0.6418219461697723,
2183
+ "grad_norm": 2.28195542777783,
2184
+ "learning_rate": 3.426069103454209e-06,
2185
+ "loss": 0.3817,
2186
+ "step": 1550
2187
+ },
2188
+ {
2189
+ "epoch": 0.6438923395445134,
2190
+ "grad_norm": 2.3945835017219985,
2191
+ "learning_rate": 3.3918044693966802e-06,
2192
+ "loss": 0.3933,
2193
+ "step": 1555
2194
+ },
2195
+ {
2196
+ "epoch": 0.6459627329192547,
2197
+ "grad_norm": 2.415327395237391,
2198
+ "learning_rate": 3.357623869769628e-06,
2199
+ "loss": 0.4023,
2200
+ "step": 1560
2201
+ },
2202
+ {
2203
+ "epoch": 0.6480331262939959,
2204
+ "grad_norm": 2.4479280468812648,
2205
+ "learning_rate": 3.3235290906414575e-06,
2206
+ "loss": 0.3828,
2207
+ "step": 1565
2208
+ },
2209
+ {
2210
+ "epoch": 0.650103519668737,
2211
+ "grad_norm": 2.3114942420521554,
2212
+ "learning_rate": 3.289521913596117e-06,
2213
+ "loss": 0.3926,
2214
+ "step": 1570
2215
+ },
2216
+ {
2217
+ "epoch": 0.6521739130434783,
2218
+ "grad_norm": 2.372619591954581,
2219
+ "learning_rate": 3.255604115640014e-06,
2220
+ "loss": 0.3752,
2221
+ "step": 1575
2222
+ },
2223
+ {
2224
+ "epoch": 0.6542443064182195,
2225
+ "grad_norm": 2.4017704692611095,
2226
+ "learning_rate": 3.2217774691091437e-06,
2227
+ "loss": 0.3944,
2228
+ "step": 1580
2229
+ },
2230
+ {
2231
+ "epoch": 0.6563146997929606,
2232
+ "grad_norm": 2.2470810475680585,
2233
+ "learning_rate": 3.1880437415764936e-06,
2234
+ "loss": 0.3815,
2235
+ "step": 1585
2236
+ },
2237
+ {
2238
+ "epoch": 0.6583850931677019,
2239
+ "grad_norm": 2.423539483725975,
2240
+ "learning_rate": 3.1544046957596746e-06,
2241
+ "loss": 0.3812,
2242
+ "step": 1590
2243
+ },
2244
+ {
2245
+ "epoch": 0.660455486542443,
2246
+ "grad_norm": 2.4639445576402466,
2247
+ "learning_rate": 3.1208620894288105e-06,
2248
+ "loss": 0.3856,
2249
+ "step": 1595
2250
+ },
2251
+ {
2252
+ "epoch": 0.6625258799171843,
2253
+ "grad_norm": 2.5119740354112294,
2254
+ "learning_rate": 3.087417675314687e-06,
2255
+ "loss": 0.3875,
2256
+ "step": 1600
2257
+ },
2258
+ {
2259
+ "epoch": 0.6645962732919255,
2260
+ "grad_norm": 2.338985888997888,
2261
+ "learning_rate": 3.0540732010171704e-06,
2262
+ "loss": 0.3829,
2263
+ "step": 1605
2264
+ },
2265
+ {
2266
+ "epoch": 0.6666666666666666,
2267
+ "grad_norm": 2.4458177835617088,
2268
+ "learning_rate": 3.0208304089138873e-06,
2269
+ "loss": 0.374,
2270
+ "step": 1610
2271
+ },
2272
+ {
2273
+ "epoch": 0.6687370600414079,
2274
+ "grad_norm": 2.488509970043159,
2275
+ "learning_rate": 2.9876910360691707e-06,
2276
+ "loss": 0.381,
2277
+ "step": 1615
2278
+ },
2279
+ {
2280
+ "epoch": 0.6708074534161491,
2281
+ "grad_norm": 2.4903330967689423,
2282
+ "learning_rate": 2.9546568141433007e-06,
2283
+ "loss": 0.3905,
2284
+ "step": 1620
2285
+ },
2286
+ {
2287
+ "epoch": 0.6728778467908902,
2288
+ "grad_norm": 2.4193684443863557,
2289
+ "learning_rate": 2.921729469302018e-06,
2290
+ "loss": 0.3701,
2291
+ "step": 1625
2292
+ },
2293
+ {
2294
+ "epoch": 0.6749482401656315,
2295
+ "grad_norm": 2.509686800128473,
2296
+ "learning_rate": 2.8889107221263203e-06,
2297
+ "loss": 0.3847,
2298
+ "step": 1630
2299
+ },
2300
+ {
2301
+ "epoch": 0.6770186335403726,
2302
+ "grad_norm": 2.311241975406654,
2303
+ "learning_rate": 2.856202287522556e-06,
2304
+ "loss": 0.3819,
2305
+ "step": 1635
2306
+ },
2307
+ {
2308
+ "epoch": 0.6790890269151139,
2309
+ "grad_norm": 2.29165835256008,
2310
+ "learning_rate": 2.8236058746328203e-06,
2311
+ "loss": 0.3711,
2312
+ "step": 1640
2313
+ },
2314
+ {
2315
+ "epoch": 0.6811594202898551,
2316
+ "grad_norm": 2.448953347522542,
2317
+ "learning_rate": 2.7911231867456345e-06,
2318
+ "loss": 0.3694,
2319
+ "step": 1645
2320
+ },
2321
+ {
2322
+ "epoch": 0.6832298136645962,
2323
+ "grad_norm": 2.377258062615133,
2324
+ "learning_rate": 2.7587559212069554e-06,
2325
+ "loss": 0.3824,
2326
+ "step": 1650
2327
+ },
2328
+ {
2329
+ "epoch": 0.6853002070393375,
2330
+ "grad_norm": 2.3413695990375145,
2331
+ "learning_rate": 2.72650576933147e-06,
2332
+ "loss": 0.3772,
2333
+ "step": 1655
2334
+ },
2335
+ {
2336
+ "epoch": 0.6873706004140787,
2337
+ "grad_norm": 2.5551246519692072,
2338
+ "learning_rate": 2.6943744163142292e-06,
2339
+ "loss": 0.3728,
2340
+ "step": 1660
2341
+ },
2342
+ {
2343
+ "epoch": 0.6894409937888198,
2344
+ "grad_norm": 2.3533635279053247,
2345
+ "learning_rate": 2.662363541142585e-06,
2346
+ "loss": 0.3711,
2347
+ "step": 1665
2348
+ },
2349
+ {
2350
+ "epoch": 0.6915113871635611,
2351
+ "grad_norm": 2.3353654763094163,
2352
+ "learning_rate": 2.6304748165084503e-06,
2353
+ "loss": 0.3608,
2354
+ "step": 1670
2355
+ },
2356
+ {
2357
+ "epoch": 0.6935817805383023,
2358
+ "grad_norm": 2.274006785717291,
2359
+ "learning_rate": 2.5987099087209035e-06,
2360
+ "loss": 0.3716,
2361
+ "step": 1675
2362
+ },
2363
+ {
2364
+ "epoch": 0.6956521739130435,
2365
+ "grad_norm": 2.295142139581534,
2366
+ "learning_rate": 2.5670704776191158e-06,
2367
+ "loss": 0.3757,
2368
+ "step": 1680
2369
+ },
2370
+ {
2371
+ "epoch": 0.6977225672877847,
2372
+ "grad_norm": 2.483766482734329,
2373
+ "learning_rate": 2.5355581764856186e-06,
2374
+ "loss": 0.3696,
2375
+ "step": 1685
2376
+ },
2377
+ {
2378
+ "epoch": 0.6997929606625258,
2379
+ "grad_norm": 2.3582111413078835,
2380
+ "learning_rate": 2.5041746519599036e-06,
2381
+ "loss": 0.3676,
2382
+ "step": 1690
2383
+ },
2384
+ {
2385
+ "epoch": 0.7018633540372671,
2386
+ "grad_norm": 2.291398876690565,
2387
+ "learning_rate": 2.4729215439523945e-06,
2388
+ "loss": 0.3719,
2389
+ "step": 1695
2390
+ },
2391
+ {
2392
+ "epoch": 0.7039337474120083,
2393
+ "grad_norm": 2.5470639986375634,
2394
+ "learning_rate": 2.441800485558748e-06,
2395
+ "loss": 0.3676,
2396
+ "step": 1700
2397
+ },
2398
+ {
2399
+ "epoch": 0.7060041407867494,
2400
+ "grad_norm": 2.505975101239771,
2401
+ "learning_rate": 2.410813102974512e-06,
2402
+ "loss": 0.3657,
2403
+ "step": 1705
2404
+ },
2405
+ {
2406
+ "epoch": 0.7080745341614907,
2407
+ "grad_norm": 2.3892006117690796,
2408
+ "learning_rate": 2.3799610154101603e-06,
2409
+ "loss": 0.3688,
2410
+ "step": 1710
2411
+ },
2412
+ {
2413
+ "epoch": 0.7101449275362319,
2414
+ "grad_norm": 2.4856029935751884,
2415
+ "learning_rate": 2.3492458350064805e-06,
2416
+ "loss": 0.371,
2417
+ "step": 1715
2418
+ },
2419
+ {
2420
+ "epoch": 0.7122153209109731,
2421
+ "grad_norm": 2.2424244033057046,
2422
+ "learning_rate": 2.3186691667503315e-06,
2423
+ "loss": 0.3663,
2424
+ "step": 1720
2425
+ },
2426
+ {
2427
+ "epoch": 0.7142857142857143,
2428
+ "grad_norm": 2.279830929996751,
2429
+ "learning_rate": 2.288232608390778e-06,
2430
+ "loss": 0.3737,
2431
+ "step": 1725
2432
+ },
2433
+ {
2434
+ "epoch": 0.7163561076604554,
2435
+ "grad_norm": 2.6139030779076906,
2436
+ "learning_rate": 2.2579377503555967e-06,
2437
+ "loss": 0.3572,
2438
+ "step": 1730
2439
+ },
2440
+ {
2441
+ "epoch": 0.7184265010351967,
2442
+ "grad_norm": 2.3674642700390005,
2443
+ "learning_rate": 2.227786175668181e-06,
2444
+ "loss": 0.3697,
2445
+ "step": 1735
2446
+ },
2447
+ {
2448
+ "epoch": 0.7204968944099379,
2449
+ "grad_norm": 2.5964819008050344,
2450
+ "learning_rate": 2.1977794598648106e-06,
2451
+ "loss": 0.3644,
2452
+ "step": 1740
2453
+ },
2454
+ {
2455
+ "epoch": 0.722567287784679,
2456
+ "grad_norm": 2.43849421908629,
2457
+ "learning_rate": 2.167919170912333e-06,
2458
+ "loss": 0.3605,
2459
+ "step": 1745
2460
+ },
2461
+ {
2462
+ "epoch": 0.7246376811594203,
2463
+ "grad_norm": 2.334477611501331,
2464
+ "learning_rate": 2.138206869126222e-06,
2465
+ "loss": 0.3494,
2466
+ "step": 1750
2467
+ },
2468
+ {
2469
+ "epoch": 0.7267080745341615,
2470
+ "grad_norm": 2.402345510430816,
2471
+ "learning_rate": 2.108644107089055e-06,
2472
+ "loss": 0.3537,
2473
+ "step": 1755
2474
+ },
2475
+ {
2476
+ "epoch": 0.7287784679089027,
2477
+ "grad_norm": 2.380966085261301,
2478
+ "learning_rate": 2.0792324295693782e-06,
2479
+ "loss": 0.3629,
2480
+ "step": 1760
2481
+ },
2482
+ {
2483
+ "epoch": 0.7308488612836439,
2484
+ "grad_norm": 2.3999413524190483,
2485
+ "learning_rate": 2.0499733734409884e-06,
2486
+ "loss": 0.363,
2487
+ "step": 1765
2488
+ },
2489
+ {
2490
+ "epoch": 0.7329192546583851,
2491
+ "grad_norm": 2.412884814797146,
2492
+ "learning_rate": 2.020868467602623e-06,
2493
+ "loss": 0.3601,
2494
+ "step": 1770
2495
+ },
2496
+ {
2497
+ "epoch": 0.7349896480331263,
2498
+ "grad_norm": 2.5149920574704083,
2499
+ "learning_rate": 1.9919192328980703e-06,
2500
+ "loss": 0.3633,
2501
+ "step": 1775
2502
+ },
2503
+ {
2504
+ "epoch": 0.7370600414078675,
2505
+ "grad_norm": 2.396339910723278,
2506
+ "learning_rate": 1.9631271820367058e-06,
2507
+ "loss": 0.3461,
2508
+ "step": 1780
2509
+ },
2510
+ {
2511
+ "epoch": 0.7391304347826086,
2512
+ "grad_norm": 2.8475210222635052,
2513
+ "learning_rate": 1.9344938195144353e-06,
2514
+ "loss": 0.3543,
2515
+ "step": 1785
2516
+ },
2517
+ {
2518
+ "epoch": 0.7412008281573499,
2519
+ "grad_norm": 2.2976281524106157,
2520
+ "learning_rate": 1.9060206415350896e-06,
2521
+ "loss": 0.3594,
2522
+ "step": 1790
2523
+ },
2524
+ {
2525
+ "epoch": 0.7432712215320911,
2526
+ "grad_norm": 2.310572205925547,
2527
+ "learning_rate": 1.8777091359322386e-06,
2528
+ "loss": 0.3532,
2529
+ "step": 1795
2530
+ },
2531
+ {
2532
+ "epoch": 0.7453416149068323,
2533
+ "grad_norm": 2.368001627955122,
2534
+ "learning_rate": 1.8495607820914451e-06,
2535
+ "loss": 0.3497,
2536
+ "step": 1800
2537
+ },
2538
+ {
2539
+ "epoch": 0.7474120082815735,
2540
+ "grad_norm": 2.3386052773816703,
2541
+ "learning_rate": 1.8215770508729602e-06,
2542
+ "loss": 0.3486,
2543
+ "step": 1805
2544
+ },
2545
+ {
2546
+ "epoch": 0.7494824016563147,
2547
+ "grad_norm": 2.2988828371262238,
2548
+ "learning_rate": 1.7937594045348666e-06,
2549
+ "loss": 0.3597,
2550
+ "step": 1810
2551
+ },
2552
+ {
2553
+ "epoch": 0.7515527950310559,
2554
+ "grad_norm": 2.5624431500836824,
2555
+ "learning_rate": 1.7661092966566728e-06,
2556
+ "loss": 0.3469,
2557
+ "step": 1815
2558
+ },
2559
+ {
2560
+ "epoch": 0.7536231884057971,
2561
+ "grad_norm": 2.4189462246329247,
2562
+ "learning_rate": 1.7386281720633569e-06,
2563
+ "loss": 0.3588,
2564
+ "step": 1820
2565
+ },
2566
+ {
2567
+ "epoch": 0.7556935817805382,
2568
+ "grad_norm": 2.3388294710115733,
2569
+ "learning_rate": 1.7113174667498612e-06,
2570
+ "loss": 0.3515,
2571
+ "step": 1825
2572
+ },
2573
+ {
2574
+ "epoch": 0.7577639751552795,
2575
+ "grad_norm": 2.3830945742175706,
2576
+ "learning_rate": 1.6841786078060674e-06,
2577
+ "loss": 0.3578,
2578
+ "step": 1830
2579
+ },
2580
+ {
2581
+ "epoch": 0.7598343685300207,
2582
+ "grad_norm": 2.3252394086801362,
2583
+ "learning_rate": 1.6572130133422204e-06,
2584
+ "loss": 0.3364,
2585
+ "step": 1835
2586
+ },
2587
+ {
2588
+ "epoch": 0.7619047619047619,
2589
+ "grad_norm": 2.5473883800899815,
2590
+ "learning_rate": 1.630422092414823e-06,
2591
+ "loss": 0.3539,
2592
+ "step": 1840
2593
+ },
2594
+ {
2595
+ "epoch": 0.7639751552795031,
2596
+ "grad_norm": 2.4523578357427596,
2597
+ "learning_rate": 1.6038072449530118e-06,
2598
+ "loss": 0.3485,
2599
+ "step": 1845
2600
+ },
2601
+ {
2602
+ "epoch": 0.7660455486542443,
2603
+ "grad_norm": 2.376864298598383,
2604
+ "learning_rate": 1.5773698616854065e-06,
2605
+ "loss": 0.3498,
2606
+ "step": 1850
2607
+ },
2608
+ {
2609
+ "epoch": 0.7681159420289855,
2610
+ "grad_norm": 2.2692629818358983,
2611
+ "learning_rate": 1.5511113240674364e-06,
2612
+ "loss": 0.3361,
2613
+ "step": 1855
2614
+ },
2615
+ {
2616
+ "epoch": 0.7701863354037267,
2617
+ "grad_norm": 2.2717444542780267,
2618
+ "learning_rate": 1.5250330042091543e-06,
2619
+ "loss": 0.3505,
2620
+ "step": 1860
2621
+ },
2622
+ {
2623
+ "epoch": 0.772256728778468,
2624
+ "grad_norm": 2.4283728013011143,
2625
+ "learning_rate": 1.4991362648035368e-06,
2626
+ "loss": 0.3382,
2627
+ "step": 1865
2628
+ },
2629
+ {
2630
+ "epoch": 0.7743271221532091,
2631
+ "grad_norm": 2.4498521782000666,
2632
+ "learning_rate": 1.4734224590552844e-06,
2633
+ "loss": 0.3507,
2634
+ "step": 1870
2635
+ },
2636
+ {
2637
+ "epoch": 0.7763975155279503,
2638
+ "grad_norm": 2.3883247184680823,
2639
+ "learning_rate": 1.4478929306101025e-06,
2640
+ "loss": 0.3352,
2641
+ "step": 1875
2642
+ },
2643
+ {
2644
+ "epoch": 0.7784679089026915,
2645
+ "grad_norm": 2.2773809296933565,
2646
+ "learning_rate": 1.4225490134844967e-06,
2647
+ "loss": 0.3458,
2648
+ "step": 1880
2649
+ },
2650
+ {
2651
+ "epoch": 0.7805383022774327,
2652
+ "grad_norm": 2.2048664941077636,
2653
+ "learning_rate": 1.3973920319960654e-06,
2654
+ "loss": 0.3413,
2655
+ "step": 1885
2656
+ },
2657
+ {
2658
+ "epoch": 0.782608695652174,
2659
+ "grad_norm": 2.4798855049257855,
2660
+ "learning_rate": 1.3724233006942972e-06,
2661
+ "loss": 0.3491,
2662
+ "step": 1890
2663
+ },
2664
+ {
2665
+ "epoch": 0.7846790890269151,
2666
+ "grad_norm": 2.4736183124807085,
2667
+ "learning_rate": 1.347644124291883e-06,
2668
+ "loss": 0.3424,
2669
+ "step": 1895
2670
+ },
2671
+ {
2672
+ "epoch": 0.7867494824016563,
2673
+ "grad_norm": 2.286682122373882,
2674
+ "learning_rate": 1.323055797596532e-06,
2675
+ "loss": 0.3429,
2676
+ "step": 1900
2677
+ },
2678
+ {
2679
+ "epoch": 0.7888198757763976,
2680
+ "grad_norm": 2.4109030453829137,
2681
+ "learning_rate": 1.2986596054433255e-06,
2682
+ "loss": 0.3539,
2683
+ "step": 1905
2684
+ },
2685
+ {
2686
+ "epoch": 0.7908902691511387,
2687
+ "grad_norm": 2.2527201235971157,
2688
+ "learning_rate": 1.2744568226275662e-06,
2689
+ "loss": 0.3413,
2690
+ "step": 1910
2691
+ },
2692
+ {
2693
+ "epoch": 0.7929606625258799,
2694
+ "grad_norm": 2.330930674364272,
2695
+ "learning_rate": 1.2504487138381782e-06,
2696
+ "loss": 0.3354,
2697
+ "step": 1915
2698
+ },
2699
+ {
2700
+ "epoch": 0.7950310559006211,
2701
+ "grad_norm": 2.479292963434977,
2702
+ "learning_rate": 1.2266365335916086e-06,
2703
+ "loss": 0.3426,
2704
+ "step": 1920
2705
+ },
2706
+ {
2707
+ "epoch": 0.7971014492753623,
2708
+ "grad_norm": 2.3313073595666416,
2709
+ "learning_rate": 1.203021526166287e-06,
2710
+ "loss": 0.3416,
2711
+ "step": 1925
2712
+ },
2713
+ {
2714
+ "epoch": 0.7991718426501035,
2715
+ "grad_norm": 2.5129741155310503,
2716
+ "learning_rate": 1.179604925537598e-06,
2717
+ "loss": 0.3306,
2718
+ "step": 1930
2719
+ },
2720
+ {
2721
+ "epoch": 0.8012422360248447,
2722
+ "grad_norm": 2.3092564913659834,
2723
+ "learning_rate": 1.1563879553134072e-06,
2724
+ "loss": 0.3332,
2725
+ "step": 1935
2726
+ },
2727
+ {
2728
+ "epoch": 0.8033126293995859,
2729
+ "grad_norm": 2.4752738147285607,
2730
+ "learning_rate": 1.1333718286701162e-06,
2731
+ "loss": 0.3361,
2732
+ "step": 1940
2733
+ },
2734
+ {
2735
+ "epoch": 0.8053830227743272,
2736
+ "grad_norm": 2.2093947429221275,
2737
+ "learning_rate": 1.110557748289275e-06,
2738
+ "loss": 0.335,
2739
+ "step": 1945
2740
+ },
2741
+ {
2742
+ "epoch": 0.8074534161490683,
2743
+ "grad_norm": 2.300100047692853,
2744
+ "learning_rate": 1.0879469062947369e-06,
2745
+ "loss": 0.3363,
2746
+ "step": 1950
2747
+ },
2748
+ {
2749
+ "epoch": 0.8095238095238095,
2750
+ "grad_norm": 2.43658926819036,
2751
+ "learning_rate": 1.0655404841903648e-06,
2752
+ "loss": 0.3374,
2753
+ "step": 1955
2754
+ },
2755
+ {
2756
+ "epoch": 0.8115942028985508,
2757
+ "grad_norm": 2.2921815004097876,
2758
+ "learning_rate": 1.0433396527982893e-06,
2759
+ "loss": 0.335,
2760
+ "step": 1960
2761
+ },
2762
+ {
2763
+ "epoch": 0.8136645962732919,
2764
+ "grad_norm": 2.310829513039428,
2765
+ "learning_rate": 1.0213455721977356e-06,
2766
+ "loss": 0.3335,
2767
+ "step": 1965
2768
+ },
2769
+ {
2770
+ "epoch": 0.8157349896480331,
2771
+ "grad_norm": 2.3643435111135434,
2772
+ "learning_rate": 9.995593916643981e-07,
2773
+ "loss": 0.3405,
2774
+ "step": 1970
2775
+ },
2776
+ {
2777
+ "epoch": 0.8178053830227743,
2778
+ "grad_norm": 2.3240624032063306,
2779
+ "learning_rate": 9.779822496103902e-07,
2780
+ "loss": 0.3299,
2781
+ "step": 1975
2782
+ },
2783
+ {
2784
+ "epoch": 0.8198757763975155,
2785
+ "grad_norm": 2.5318838270330195,
2786
+ "learning_rate": 9.566152735247576e-07,
2787
+ "loss": 0.3434,
2788
+ "step": 1980
2789
+ },
2790
+ {
2791
+ "epoch": 0.8219461697722568,
2792
+ "grad_norm": 2.3420007259490228,
2793
+ "learning_rate": 9.354595799145627e-07,
2794
+ "loss": 0.3421,
2795
+ "step": 1985
2796
+ },
2797
+ {
2798
+ "epoch": 0.8240165631469979,
2799
+ "grad_norm": 2.335473751400107,
2800
+ "learning_rate": 9.145162742465424e-07,
2801
+ "loss": 0.33,
2802
+ "step": 1990
2803
+ },
2804
+ {
2805
+ "epoch": 0.8260869565217391,
2806
+ "grad_norm": 2.5508864216623444,
2807
+ "learning_rate": 8.937864508893396e-07,
2808
+ "loss": 0.333,
2809
+ "step": 1995
2810
+ },
2811
+ {
2812
+ "epoch": 0.8281573498964804,
2813
+ "grad_norm": 2.488334856667467,
2814
+ "learning_rate": 8.732711930563259e-07,
2815
+ "loss": 0.3365,
2816
+ "step": 2000
2817
+ },
2818
+ {
2819
+ "epoch": 0.8302277432712215,
2820
+ "grad_norm": 2.2859380568393712,
2821
+ "learning_rate": 8.529715727489912e-07,
2822
+ "loss": 0.3318,
2823
+ "step": 2005
2824
+ },
2825
+ {
2826
+ "epoch": 0.8322981366459627,
2827
+ "grad_norm": 2.5733587910845253,
2828
+ "learning_rate": 8.32888650700936e-07,
2829
+ "loss": 0.3358,
2830
+ "step": 2010
2831
+ },
2832
+ {
2833
+ "epoch": 0.8343685300207039,
2834
+ "grad_norm": 2.4265851072259124,
2835
+ "learning_rate": 8.130234763224342e-07,
2836
+ "loss": 0.335,
2837
+ "step": 2015
2838
+ },
2839
+ {
2840
+ "epoch": 0.8364389233954451,
2841
+ "grad_norm": 2.2464388261333257,
2842
+ "learning_rate": 7.93377087645607e-07,
2843
+ "loss": 0.3176,
2844
+ "step": 2020
2845
+ },
2846
+ {
2847
+ "epoch": 0.8385093167701864,
2848
+ "grad_norm": 2.3494420369788154,
2849
+ "learning_rate": 7.739505112701751e-07,
2850
+ "loss": 0.3332,
2851
+ "step": 2025
2852
+ },
2853
+ {
2854
+ "epoch": 0.8405797101449275,
2855
+ "grad_norm": 2.4054514152177653,
2856
+ "learning_rate": 7.547447623098191e-07,
2857
+ "loss": 0.3311,
2858
+ "step": 2030
2859
+ },
2860
+ {
2861
+ "epoch": 0.8426501035196687,
2862
+ "grad_norm": 2.261913018941359,
2863
+ "learning_rate": 7.357608443391312e-07,
2864
+ "loss": 0.3256,
2865
+ "step": 2035
2866
+ },
2867
+ {
2868
+ "epoch": 0.84472049689441,
2869
+ "grad_norm": 2.2421739628590043,
2870
+ "learning_rate": 7.169997493411774e-07,
2871
+ "loss": 0.3208,
2872
+ "step": 2040
2873
+ },
2874
+ {
2875
+ "epoch": 0.8467908902691511,
2876
+ "grad_norm": 2.3654167525865732,
2877
+ "learning_rate": 6.984624576556647e-07,
2878
+ "loss": 0.3218,
2879
+ "step": 2045
2880
+ },
2881
+ {
2882
+ "epoch": 0.8488612836438924,
2883
+ "grad_norm": 2.4284908975712574,
2884
+ "learning_rate": 6.801499379277115e-07,
2885
+ "loss": 0.3311,
2886
+ "step": 2050
2887
+ },
2888
+ {
2889
+ "epoch": 0.8509316770186336,
2890
+ "grad_norm": 2.22925170204331,
2891
+ "learning_rate": 6.620631470572314e-07,
2892
+ "loss": 0.3313,
2893
+ "step": 2055
2894
+ },
2895
+ {
2896
+ "epoch": 0.8530020703933747,
2897
+ "grad_norm": 2.5749952139899652,
2898
+ "learning_rate": 6.442030301489338e-07,
2899
+ "loss": 0.3301,
2900
+ "step": 2060
2901
+ },
2902
+ {
2903
+ "epoch": 0.855072463768116,
2904
+ "grad_norm": 2.2674939075313048,
2905
+ "learning_rate": 6.265705204629402e-07,
2906
+ "loss": 0.3081,
2907
+ "step": 2065
2908
+ },
2909
+ {
2910
+ "epoch": 0.8571428571428571,
2911
+ "grad_norm": 2.496812533980436,
2912
+ "learning_rate": 6.091665393660112e-07,
2913
+ "loss": 0.3262,
2914
+ "step": 2070
2915
+ },
2916
+ {
2917
+ "epoch": 0.8592132505175983,
2918
+ "grad_norm": 2.4717944573126287,
2919
+ "learning_rate": 5.919919962834069e-07,
2920
+ "loss": 0.3164,
2921
+ "step": 2075
2922
+ },
2923
+ {
2924
+ "epoch": 0.8612836438923396,
2925
+ "grad_norm": 2.3257141732938322,
2926
+ "learning_rate": 5.750477886513656e-07,
2927
+ "loss": 0.3314,
2928
+ "step": 2080
2929
+ },
2930
+ {
2931
+ "epoch": 0.8633540372670807,
2932
+ "grad_norm": 2.372908668701669,
2933
+ "learning_rate": 5.58334801870209e-07,
2934
+ "loss": 0.3257,
2935
+ "step": 2085
2936
+ },
2937
+ {
2938
+ "epoch": 0.865424430641822,
2939
+ "grad_norm": 2.344278855687297,
2940
+ "learning_rate": 5.418539092580727e-07,
2941
+ "loss": 0.3346,
2942
+ "step": 2090
2943
+ },
2944
+ {
2945
+ "epoch": 0.8674948240165632,
2946
+ "grad_norm": 2.3324906572581976,
2947
+ "learning_rate": 5.256059720052787e-07,
2948
+ "loss": 0.3131,
2949
+ "step": 2095
2950
+ },
2951
+ {
2952
+ "epoch": 0.8695652173913043,
2953
+ "grad_norm": 2.4514845156052503,
2954
+ "learning_rate": 5.095918391293303e-07,
2955
+ "loss": 0.3279,
2956
+ "step": 2100
2957
+ },
2958
+ {
2959
+ "epoch": 0.8716356107660456,
2960
+ "grad_norm": 2.3203875730343144,
2961
+ "learning_rate": 4.938123474305473e-07,
2962
+ "loss": 0.3195,
2963
+ "step": 2105
2964
+ },
2965
+ {
2966
+ "epoch": 0.8737060041407867,
2967
+ "grad_norm": 2.440973750364137,
2968
+ "learning_rate": 4.782683214483413e-07,
2969
+ "loss": 0.3217,
2970
+ "step": 2110
2971
+ },
2972
+ {
2973
+ "epoch": 0.8757763975155279,
2974
+ "grad_norm": 2.424738960596876,
2975
+ "learning_rate": 4.629605734181331e-07,
2976
+ "loss": 0.3214,
2977
+ "step": 2115
2978
+ },
2979
+ {
2980
+ "epoch": 0.8778467908902692,
2981
+ "grad_norm": 2.3840075746764726,
2982
+ "learning_rate": 4.478899032289047e-07,
2983
+ "loss": 0.3219,
2984
+ "step": 2120
2985
+ },
2986
+ {
2987
+ "epoch": 0.8799171842650103,
2988
+ "grad_norm": 2.4240393254281516,
2989
+ "learning_rate": 4.3305709838140755e-07,
2990
+ "loss": 0.3259,
2991
+ "step": 2125
2992
+ },
2993
+ {
2994
+ "epoch": 0.8819875776397516,
2995
+ "grad_norm": 2.310253664818122,
2996
+ "learning_rate": 4.1846293394700645e-07,
2997
+ "loss": 0.3242,
2998
+ "step": 2130
2999
+ },
3000
+ {
3001
+ "epoch": 0.8840579710144928,
3002
+ "grad_norm": 2.517972583368381,
3003
+ "learning_rate": 4.041081725271856e-07,
3004
+ "loss": 0.3229,
3005
+ "step": 2135
3006
+ },
3007
+ {
3008
+ "epoch": 0.8861283643892339,
3009
+ "grad_norm": 2.428798401646251,
3010
+ "learning_rate": 3.8999356421369426e-07,
3011
+ "loss": 0.3271,
3012
+ "step": 2140
3013
+ },
3014
+ {
3015
+ "epoch": 0.8881987577639752,
3016
+ "grad_norm": 2.450001348873468,
3017
+ "learning_rate": 3.7611984654935707e-07,
3018
+ "loss": 0.3269,
3019
+ "step": 2145
3020
+ },
3021
+ {
3022
+ "epoch": 0.8902691511387164,
3023
+ "grad_norm": 2.3842094730267496,
3024
+ "learning_rate": 3.6248774448952695e-07,
3025
+ "loss": 0.3245,
3026
+ "step": 2150
3027
+ },
3028
+ {
3029
+ "epoch": 0.8923395445134575,
3030
+ "grad_norm": 2.3496216155823877,
3031
+ "learning_rate": 3.490979703642117e-07,
3032
+ "loss": 0.3195,
3033
+ "step": 2155
3034
+ },
3035
+ {
3036
+ "epoch": 0.8944099378881988,
3037
+ "grad_norm": 2.4989229920823774,
3038
+ "learning_rate": 3.35951223840848e-07,
3039
+ "loss": 0.3289,
3040
+ "step": 2160
3041
+ },
3042
+ {
3043
+ "epoch": 0.8964803312629399,
3044
+ "grad_norm": 2.215427120738685,
3045
+ "learning_rate": 3.2304819188773815e-07,
3046
+ "loss": 0.3137,
3047
+ "step": 2165
3048
+ },
3049
+ {
3050
+ "epoch": 0.8985507246376812,
3051
+ "grad_norm": 2.3056359567362383,
3052
+ "learning_rate": 3.1038954873816027e-07,
3053
+ "loss": 0.3181,
3054
+ "step": 2170
3055
+ },
3056
+ {
3057
+ "epoch": 0.9006211180124224,
3058
+ "grad_norm": 2.344264414609259,
3059
+ "learning_rate": 2.9797595585512986e-07,
3060
+ "loss": 0.3125,
3061
+ "step": 2175
3062
+ },
3063
+ {
3064
+ "epoch": 0.9026915113871635,
3065
+ "grad_norm": 2.2624241698250507,
3066
+ "learning_rate": 2.858080618968423e-07,
3067
+ "loss": 0.3265,
3068
+ "step": 2180
3069
+ },
3070
+ {
3071
+ "epoch": 0.9047619047619048,
3072
+ "grad_norm": 2.408379187199429,
3073
+ "learning_rate": 2.738865026827714e-07,
3074
+ "loss": 0.3304,
3075
+ "step": 2185
3076
+ },
3077
+ {
3078
+ "epoch": 0.906832298136646,
3079
+ "grad_norm": 2.375361674460972,
3080
+ "learning_rate": 2.6221190116045126e-07,
3081
+ "loss": 0.3105,
3082
+ "step": 2190
3083
+ },
3084
+ {
3085
+ "epoch": 0.9089026915113871,
3086
+ "grad_norm": 2.3986823821063723,
3087
+ "learning_rate": 2.507848673729224e-07,
3088
+ "loss": 0.3167,
3089
+ "step": 2195
3090
+ },
3091
+ {
3092
+ "epoch": 0.9109730848861284,
3093
+ "grad_norm": 2.300915767213228,
3094
+ "learning_rate": 2.3960599842685394e-07,
3095
+ "loss": 0.3174,
3096
+ "step": 2200
3097
+ },
3098
+ {
3099
+ "epoch": 0.9130434782608695,
3100
+ "grad_norm": 2.4752814085308525,
3101
+ "learning_rate": 2.2867587846134188e-07,
3102
+ "loss": 0.3205,
3103
+ "step": 2205
3104
+ },
3105
+ {
3106
+ "epoch": 0.9151138716356108,
3107
+ "grad_norm": 2.618957183855706,
3108
+ "learning_rate": 2.179950786173879e-07,
3109
+ "loss": 0.3105,
3110
+ "step": 2210
3111
+ },
3112
+ {
3113
+ "epoch": 0.917184265010352,
3114
+ "grad_norm": 2.4747630022844604,
3115
+ "learning_rate": 2.07564157008055e-07,
3116
+ "loss": 0.3206,
3117
+ "step": 2215
3118
+ },
3119
+ {
3120
+ "epoch": 0.9192546583850931,
3121
+ "grad_norm": 2.35288736739077,
3122
+ "learning_rate": 1.9738365868930188e-07,
3123
+ "loss": 0.3243,
3124
+ "step": 2220
3125
+ },
3126
+ {
3127
+ "epoch": 0.9213250517598344,
3128
+ "grad_norm": 2.2353440364597175,
3129
+ "learning_rate": 1.8745411563150128e-07,
3130
+ "loss": 0.3216,
3131
+ "step": 2225
3132
+ },
3133
+ {
3134
+ "epoch": 0.9233954451345756,
3135
+ "grad_norm": 2.3590967551206834,
3136
+ "learning_rate": 1.7777604669164727e-07,
3137
+ "loss": 0.3169,
3138
+ "step": 2230
3139
+ },
3140
+ {
3141
+ "epoch": 0.9254658385093167,
3142
+ "grad_norm": 2.279766783196755,
3143
+ "learning_rate": 1.6834995758623685e-07,
3144
+ "loss": 0.3231,
3145
+ "step": 2235
3146
+ },
3147
+ {
3148
+ "epoch": 0.927536231884058,
3149
+ "grad_norm": 2.424705804446328,
3150
+ "learning_rate": 1.5917634086484778e-07,
3151
+ "loss": 0.3084,
3152
+ "step": 2240
3153
+ },
3154
+ {
3155
+ "epoch": 0.9296066252587992,
3156
+ "grad_norm": 2.284188592528974,
3157
+ "learning_rate": 1.5025567588439925e-07,
3158
+ "loss": 0.3207,
3159
+ "step": 2245
3160
+ },
3161
+ {
3162
+ "epoch": 0.9316770186335404,
3163
+ "grad_norm": 2.440907754264571,
3164
+ "learning_rate": 1.415884287841074e-07,
3165
+ "loss": 0.317,
3166
+ "step": 2250
3167
+ },
3168
+ {
3169
+ "epoch": 0.9337474120082816,
3170
+ "grad_norm": 2.4379439764772526,
3171
+ "learning_rate": 1.331750524611225e-07,
3172
+ "loss": 0.3072,
3173
+ "step": 2255
3174
+ },
3175
+ {
3176
+ "epoch": 0.9358178053830227,
3177
+ "grad_norm": 2.316142028863615,
3178
+ "learning_rate": 1.2501598654686532e-07,
3179
+ "loss": 0.3239,
3180
+ "step": 2260
3181
+ },
3182
+ {
3183
+ "epoch": 0.937888198757764,
3184
+ "grad_norm": 2.440325157626698,
3185
+ "learning_rate": 1.1711165738405749e-07,
3186
+ "loss": 0.3139,
3187
+ "step": 2265
3188
+ },
3189
+ {
3190
+ "epoch": 0.9399585921325052,
3191
+ "grad_norm": 2.5527087863191444,
3192
+ "learning_rate": 1.0946247800443899e-07,
3193
+ "loss": 0.3254,
3194
+ "step": 2270
3195
+ },
3196
+ {
3197
+ "epoch": 0.9420289855072463,
3198
+ "grad_norm": 2.3791340835281636,
3199
+ "learning_rate": 1.0206884810718964e-07,
3200
+ "loss": 0.3288,
3201
+ "step": 2275
3202
+ },
3203
+ {
3204
+ "epoch": 0.9440993788819876,
3205
+ "grad_norm": 2.4013244243260012,
3206
+ "learning_rate": 9.493115403803876e-08,
3207
+ "loss": 0.3273,
3208
+ "step": 2280
3209
+ },
3210
+ {
3211
+ "epoch": 0.9461697722567288,
3212
+ "grad_norm": 2.5204426609428237,
3213
+ "learning_rate": 8.804976876908178e-08,
3214
+ "loss": 0.3123,
3215
+ "step": 2285
3216
+ },
3217
+ {
3218
+ "epoch": 0.94824016563147,
3219
+ "grad_norm": 2.237652421457841,
3220
+ "learning_rate": 8.142505187928861e-08,
3221
+ "loss": 0.3179,
3222
+ "step": 2290
3223
+ },
3224
+ {
3225
+ "epoch": 0.9503105590062112,
3226
+ "grad_norm": 2.4231612218683343,
3227
+ "learning_rate": 7.505734953571486e-08,
3228
+ "loss": 0.3189,
3229
+ "step": 2295
3230
+ },
3231
+ {
3232
+ "epoch": 0.9523809523809523,
3233
+ "grad_norm": 2.2082939472481162,
3234
+ "learning_rate": 6.894699447541231e-08,
3235
+ "loss": 0.3098,
3236
+ "step": 2300
3237
+ },
3238
+ {
3239
+ "epoch": 0.9544513457556936,
3240
+ "grad_norm": 2.406819987358586,
3241
+ "learning_rate": 6.309430598804234e-08,
3242
+ "loss": 0.3035,
3243
+ "step": 2305
3244
+ },
3245
+ {
3246
+ "epoch": 0.9565217391304348,
3247
+ "grad_norm": 2.324311672019134,
3248
+ "learning_rate": 5.7499589899193134e-08,
3249
+ "loss": 0.3126,
3250
+ "step": 2310
3251
+ },
3252
+ {
3253
+ "epoch": 0.9585921325051759,
3254
+ "grad_norm": 2.513161161903101,
3255
+ "learning_rate": 5.216313855439858e-08,
3256
+ "loss": 0.3201,
3257
+ "step": 2315
3258
+ },
3259
+ {
3260
+ "epoch": 0.9606625258799172,
3261
+ "grad_norm": 2.4580927731114257,
3262
+ "learning_rate": 4.7085230803860513e-08,
3263
+ "loss": 0.3205,
3264
+ "step": 2320
3265
+ },
3266
+ {
3267
+ "epoch": 0.9627329192546584,
3268
+ "grad_norm": 2.446929983666297,
3269
+ "learning_rate": 4.2266131987880876e-08,
3270
+ "loss": 0.3206,
3271
+ "step": 2325
3272
+ },
3273
+ {
3274
+ "epoch": 0.9648033126293996,
3275
+ "grad_norm": 2.27874740868648,
3276
+ "learning_rate": 3.770609392299285e-08,
3277
+ "loss": 0.3131,
3278
+ "step": 2330
3279
+ },
3280
+ {
3281
+ "epoch": 0.9668737060041408,
3282
+ "grad_norm": 2.3849246524911107,
3283
+ "learning_rate": 3.340535488880525e-08,
3284
+ "loss": 0.3277,
3285
+ "step": 2335
3286
+ },
3287
+ {
3288
+ "epoch": 0.968944099378882,
3289
+ "grad_norm": 2.421083844991871,
3290
+ "learning_rate": 2.9364139615550846e-08,
3291
+ "loss": 0.3186,
3292
+ "step": 2340
3293
+ },
3294
+ {
3295
+ "epoch": 0.9710144927536232,
3296
+ "grad_norm": 2.4038973912823334,
3297
+ "learning_rate": 2.5582659272341827e-08,
3298
+ "loss": 0.3098,
3299
+ "step": 2345
3300
+ },
3301
+ {
3302
+ "epoch": 0.9730848861283644,
3303
+ "grad_norm": 2.5427340924398694,
3304
+ "learning_rate": 2.206111145613865e-08,
3305
+ "loss": 0.3156,
3306
+ "step": 2350
3307
+ },
3308
+ {
3309
+ "epoch": 0.9751552795031055,
3310
+ "grad_norm": 2.5031732620266753,
3311
+ "learning_rate": 1.8799680181421087e-08,
3312
+ "loss": 0.3302,
3313
+ "step": 2355
3314
+ },
3315
+ {
3316
+ "epoch": 0.9772256728778468,
3317
+ "grad_norm": 2.535683472708062,
3318
+ "learning_rate": 1.5798535870575893e-08,
3319
+ "loss": 0.3162,
3320
+ "step": 2360
3321
+ },
3322
+ {
3323
+ "epoch": 0.979296066252588,
3324
+ "grad_norm": 2.492815206410193,
3325
+ "learning_rate": 1.30578353449895e-08,
3326
+ "loss": 0.3112,
3327
+ "step": 2365
3328
+ },
3329
+ {
3330
+ "epoch": 0.9813664596273292,
3331
+ "grad_norm": 2.321359601019582,
3332
+ "learning_rate": 1.0577721816854015e-08,
3333
+ "loss": 0.3139,
3334
+ "step": 2370
3335
+ },
3336
+ {
3337
+ "epoch": 0.9834368530020704,
3338
+ "grad_norm": 2.376543987859838,
3339
+ "learning_rate": 8.35832488168431e-09,
3340
+ "loss": 0.318,
3341
+ "step": 2375
3342
+ },
3343
+ {
3344
+ "epoch": 0.9855072463768116,
3345
+ "grad_norm": 2.4905741784802693,
3346
+ "learning_rate": 6.399760511546227e-09,
3347
+ "loss": 0.3196,
3348
+ "step": 2380
3349
+ },
3350
+ {
3351
+ "epoch": 0.9875776397515528,
3352
+ "grad_norm": 2.4503057250197617,
3353
+ "learning_rate": 4.7021310489953065e-09,
3354
+ "loss": 0.3158,
3355
+ "step": 2385
3356
+ },
3357
+ {
3358
+ "epoch": 0.989648033126294,
3359
+ "grad_norm": 2.382766716100949,
3360
+ "learning_rate": 3.265525201731623e-09,
3361
+ "loss": 0.3154,
3362
+ "step": 2390
3363
+ },
3364
+ {
3365
+ "epoch": 0.9917184265010351,
3366
+ "grad_norm": 2.341666724587077,
3367
+ "learning_rate": 2.090018037960717e-09,
3368
+ "loss": 0.3122,
3369
+ "step": 2395
3370
+ },
3371
+ {
3372
+ "epoch": 0.9937888198757764,
3373
+ "grad_norm": 2.398969814052762,
3374
+ "learning_rate": 1.1756709824750633e-09,
3375
+ "loss": 0.3121,
3376
+ "step": 2400
3377
+ },
3378
+ {
3379
+ "epoch": 0.9958592132505176,
3380
+ "grad_norm": 2.320173528449576,
3381
+ "learning_rate": 5.225318134399749e-10,
3382
+ "loss": 0.3239,
3383
+ "step": 2405
3384
+ },
3385
+ {
3386
+ "epoch": 0.9979296066252588,
3387
+ "grad_norm": 2.3737353000585055,
3388
+ "learning_rate": 1.306346599011521e-10,
3389
+ "loss": 0.3218,
3390
+ "step": 2410
3391
+ },
3392
+ {
3393
+ "epoch": 1.0,
3394
+ "grad_norm": 2.319768008564562,
3395
+ "learning_rate": 0.0,
3396
+ "loss": 0.3215,
3397
+ "step": 2415
3398
+ },
3399
+ {
3400
+ "epoch": 1.0,
3401
+ "eval_runtime": 2.6812,
3402
+ "eval_samples_per_second": 3.73,
3403
+ "eval_steps_per_second": 1.119,
3404
+ "step": 2415
3405
+ },
3406
+ {
3407
+ "epoch": 1.0,
3408
+ "step": 2415,
3409
+ "total_flos": 252825934233600.0,
3410
+ "train_loss": 0.5143274352170419,
3411
+ "train_runtime": 26101.4191,
3412
+ "train_samples_per_second": 1.48,
3413
+ "train_steps_per_second": 0.093
3414
+ }
3415
+ ],
3416
+ "logging_steps": 5,
3417
+ "max_steps": 2415,
3418
+ "num_input_tokens_seen": 0,
3419
+ "num_train_epochs": 1,
3420
+ "save_steps": 100,
3421
+ "stateful_callbacks": {
3422
+ "TrainerControl": {
3423
+ "args": {
3424
+ "should_epoch_stop": false,
3425
+ "should_evaluate": false,
3426
+ "should_log": false,
3427
+ "should_save": true,
3428
+ "should_training_stop": true
3429
+ },
3430
+ "attributes": {}
3431
+ }
3432
+ },
3433
+ "total_flos": 252825934233600.0,
3434
+ "train_batch_size": 4,
3435
+ "trial_name": null,
3436
+ "trial_params": null
3437
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:def8cf7797a022d023e92bd2845a33c9fc46de16c930f42aefc0178660107a19
3
+ size 7032