PseudoTerminal X
commited on
Model card auto-generated by SimpleTuner
Browse files
README.md
CHANGED
@@ -72,8 +72,8 @@ You may reuse the base model text encoder for inference.
|
|
72 |
|
73 |
## Training settings
|
74 |
|
75 |
-
- Training epochs:
|
76 |
-
- Training steps:
|
77 |
- Learning rate: 0.0001
|
78 |
- Effective batch size: 2
|
79 |
- Micro-batch size: 2
|
@@ -115,7 +115,7 @@ You may reuse the base model text encoder for inference.
|
|
115 |
### garfield
|
116 |
- Repeats: 0
|
117 |
- Total number of images: 2206
|
118 |
-
- Total number of aspect buckets:
|
119 |
- Resolution: 512 px
|
120 |
- Cropped: False
|
121 |
- Crop style: None
|
@@ -126,87 +126,27 @@ You may reuse the base model text encoder for inference.
|
|
126 |
|
127 |
|
128 |
```python
|
129 |
-
import argparse
|
130 |
import torch
|
131 |
-
from
|
132 |
from lycoris import create_lycoris_from_weights
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
image.save(output_file, format="PNG")
|
153 |
-
print(f"Image saved as {output_file}")
|
154 |
-
|
155 |
-
def main():
|
156 |
-
parser = argparse.ArgumentParser(description="Generate images using a custom diffusion pipeline with LoRA weights.")
|
157 |
-
parser.add_argument("--model_id", type=str, default='black-forest-labs/FLUX.1-dev', help="Model ID from Hugging Face Hub.")
|
158 |
-
parser.add_argument("--adapter_id", type=str, default='pytorch_lora_weights.safetensors', help="LoRA weights file.")
|
159 |
-
parser.add_argument("--lora_scale", type=float, default=1.0, help="Scale for LoRA weights.")
|
160 |
-
parser.add_argument("--output_file", type=str, default="output.png", help="Output file name for the generated image.")
|
161 |
-
parser.add_argument("--num_inference_steps", type=int, default=30, help="Number of inference steps.")
|
162 |
-
parser.add_argument("--guidance_scale", type=float, default=3.5, help="Guidance scale for the generation.")
|
163 |
-
parser.add_argument("--seed", type=int, default=1641421826, help="Random seed for reproducibility.")
|
164 |
-
parser.add_argument("--device", type=str, default='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu', help="Device to run the model on.")
|
165 |
-
|
166 |
-
args = parser.parse_args()
|
167 |
-
|
168 |
-
# Load model and weights
|
169 |
-
hf_hub_download(repo_id="terminusresearch/flux-lokr-garfield-masked", filename=args.adapter_id, local_dir="./")
|
170 |
-
pipeline = DiffusionPipeline.from_pretrained(args.model_id, torch_dtype=torch.bfloat16)
|
171 |
-
|
172 |
-
# Apply LoRA weights
|
173 |
-
wrapper, _ = create_lycoris_from_weights(args.lora_scale, args.adapter_id, pipeline.transformer)
|
174 |
-
wrapper.merge_to()
|
175 |
-
|
176 |
-
print("Model loaded successfully. Ready to generate images.")
|
177 |
-
|
178 |
-
while True:
|
179 |
-
user_input = input("Enter a prompt or 'quit' to exit: ")
|
180 |
-
if user_input.lower() == 'quit':
|
181 |
-
break
|
182 |
-
|
183 |
-
# Check for resolution command
|
184 |
-
if user_input.startswith("resolution:"):
|
185 |
-
resolution = user_input.split(":")[1]
|
186 |
-
width, height = map(int, resolution.split("x"))
|
187 |
-
print(f"Resolution set to {width}x{height}")
|
188 |
-
continue
|
189 |
-
|
190 |
-
prompt = user_input
|
191 |
-
output_file = args.output_file.replace(".png", f"_{prompt.replace(' ', '_')}.png")
|
192 |
-
|
193 |
-
# Use default or previously set resolution
|
194 |
-
width = locals().get('width', 1024)
|
195 |
-
height = locals().get('height', 1024)
|
196 |
-
|
197 |
-
generate_image(
|
198 |
-
pipeline=pipeline,
|
199 |
-
prompt=prompt,
|
200 |
-
output_file=output_file,
|
201 |
-
num_inference_steps=args.num_inference_steps,
|
202 |
-
width=width,
|
203 |
-
height=height,
|
204 |
-
guidance_scale=args.guidance_scale,
|
205 |
-
seed=args.seed,
|
206 |
-
device=args.device
|
207 |
-
)
|
208 |
-
|
209 |
-
if __name__ == "__main__":
|
210 |
-
main()
|
211 |
```
|
212 |
|
|
|
72 |
|
73 |
## Training settings
|
74 |
|
75 |
+
- Training epochs: 2
|
76 |
+
- Training steps: 2500
|
77 |
- Learning rate: 0.0001
|
78 |
- Effective batch size: 2
|
79 |
- Micro-batch size: 2
|
|
|
115 |
### garfield
|
116 |
- Repeats: 0
|
117 |
- Total number of images: 2206
|
118 |
+
- Total number of aspect buckets: 4
|
119 |
- Resolution: 512 px
|
120 |
- Cropped: False
|
121 |
- Crop style: None
|
|
|
126 |
|
127 |
|
128 |
```python
|
|
|
129 |
import torch
|
130 |
+
from diffusers import DiffusionPipeline
|
131 |
from lycoris import create_lycoris_from_weights
|
132 |
+
|
133 |
+
model_id = 'black-forest-labs/FLUX.1-dev'
|
134 |
+
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
|
135 |
+
lora_scale = 1.0
|
136 |
+
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
|
137 |
+
wrapper.merge_to()
|
138 |
+
|
139 |
+
prompt = "A photo-realistic image of a cat"
|
140 |
+
|
141 |
+
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
|
142 |
+
image = pipeline(
|
143 |
+
prompt=prompt,
|
144 |
+
num_inference_steps=20,
|
145 |
+
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
|
146 |
+
width=1776,
|
147 |
+
height=512,
|
148 |
+
guidance_scale=3.0,
|
149 |
+
).images[0]
|
150 |
+
image.save("output.png", format="PNG")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
```
|
152 |
|