zephyr-sft-GGUF / README.md
morriszms's picture
Upload folder using huggingface_hub
3144dec verified
metadata
language:
  - en
library_name: transformers
license: apache-2.0
tags:
  - unsloth
  - transformers
  - zephyr
  - sft
  - TensorBlock
  - GGUF
base_model: unsloth/zephyr-sft
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

unsloth/zephyr-sft - GGUF

This repo contains GGUF format model files for unsloth/zephyr-sft.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template

<|system|>
{system_prompt}</s>
<|user|>
{prompt}</s>
<|assistant|>

Model file specification

Filename Quant type File Size Description
zephyr-sft-Q2_K.gguf Q2_K 2.719 GB smallest, significant quality loss - not recommended for most purposes
zephyr-sft-Q3_K_S.gguf Q3_K_S 3.165 GB very small, high quality loss
zephyr-sft-Q3_K_M.gguf Q3_K_M 3.519 GB very small, high quality loss
zephyr-sft-Q3_K_L.gguf Q3_K_L 3.822 GB small, substantial quality loss
zephyr-sft-Q4_0.gguf Q4_0 4.109 GB legacy; small, very high quality loss - prefer using Q3_K_M
zephyr-sft-Q4_K_S.gguf Q4_K_S 4.140 GB small, greater quality loss
zephyr-sft-Q4_K_M.gguf Q4_K_M 4.368 GB medium, balanced quality - recommended
zephyr-sft-Q5_0.gguf Q5_0 4.998 GB legacy; medium, balanced quality - prefer using Q4_K_M
zephyr-sft-Q5_K_S.gguf Q5_K_S 4.998 GB large, low quality loss - recommended
zephyr-sft-Q5_K_M.gguf Q5_K_M 5.131 GB large, very low quality loss - recommended
zephyr-sft-Q6_K.gguf Q6_K 5.942 GB very large, extremely low quality loss
zephyr-sft-Q8_0.gguf Q8_0 7.696 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/zephyr-sft-GGUF --include "zephyr-sft-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/zephyr-sft-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'