Upload folder using huggingface_hub
Browse files- .gitattributes +12 -0
- README.md +724 -0
- bloomz-7b1-mt-Q2_K.gguf +3 -0
- bloomz-7b1-mt-Q3_K_L.gguf +3 -0
- bloomz-7b1-mt-Q3_K_M.gguf +3 -0
- bloomz-7b1-mt-Q3_K_S.gguf +3 -0
- bloomz-7b1-mt-Q4_0.gguf +3 -0
- bloomz-7b1-mt-Q4_K_M.gguf +3 -0
- bloomz-7b1-mt-Q4_K_S.gguf +3 -0
- bloomz-7b1-mt-Q5_0.gguf +3 -0
- bloomz-7b1-mt-Q5_K_M.gguf +3 -0
- bloomz-7b1-mt-Q5_K_S.gguf +3 -0
- bloomz-7b1-mt-Q6_K.gguf +3 -0
- bloomz-7b1-mt-Q8_0.gguf +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,15 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
bloomz-7b1-mt-Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
bloomz-7b1-mt-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
|
38 |
+
bloomz-7b1-mt-Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
|
39 |
+
bloomz-7b1-mt-Q3_K_S.gguf filter=lfs diff=lfs merge=lfs -text
|
40 |
+
bloomz-7b1-mt-Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
|
41 |
+
bloomz-7b1-mt-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
|
42 |
+
bloomz-7b1-mt-Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
|
43 |
+
bloomz-7b1-mt-Q5_0.gguf filter=lfs diff=lfs merge=lfs -text
|
44 |
+
bloomz-7b1-mt-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
|
45 |
+
bloomz-7b1-mt-Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
|
46 |
+
bloomz-7b1-mt-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
|
47 |
+
bloomz-7b1-mt-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,724 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- bigscience/xP3mt
|
4 |
+
license: bigscience-bloom-rail-1.0
|
5 |
+
language:
|
6 |
+
- ak
|
7 |
+
- ar
|
8 |
+
- as
|
9 |
+
- bm
|
10 |
+
- bn
|
11 |
+
- ca
|
12 |
+
- code
|
13 |
+
- en
|
14 |
+
- es
|
15 |
+
- eu
|
16 |
+
- fon
|
17 |
+
- fr
|
18 |
+
- gu
|
19 |
+
- hi
|
20 |
+
- id
|
21 |
+
- ig
|
22 |
+
- ki
|
23 |
+
- kn
|
24 |
+
- lg
|
25 |
+
- ln
|
26 |
+
- ml
|
27 |
+
- mr
|
28 |
+
- ne
|
29 |
+
- nso
|
30 |
+
- ny
|
31 |
+
- or
|
32 |
+
- pa
|
33 |
+
- pt
|
34 |
+
- rn
|
35 |
+
- rw
|
36 |
+
- sn
|
37 |
+
- st
|
38 |
+
- sw
|
39 |
+
- ta
|
40 |
+
- te
|
41 |
+
- tn
|
42 |
+
- ts
|
43 |
+
- tum
|
44 |
+
- tw
|
45 |
+
- ur
|
46 |
+
- vi
|
47 |
+
- wo
|
48 |
+
- xh
|
49 |
+
- yo
|
50 |
+
- zh
|
51 |
+
- zu
|
52 |
+
programming_language:
|
53 |
+
- C
|
54 |
+
- C++
|
55 |
+
- C#
|
56 |
+
- Go
|
57 |
+
- Java
|
58 |
+
- JavaScript
|
59 |
+
- Lua
|
60 |
+
- PHP
|
61 |
+
- Python
|
62 |
+
- Ruby
|
63 |
+
- Rust
|
64 |
+
- Scala
|
65 |
+
- TypeScript
|
66 |
+
pipeline_tag: text-generation
|
67 |
+
widget:
|
68 |
+
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous
|
69 |
+
review as positive, neutral or negative?
|
70 |
+
example_title: zh-en sentiment
|
71 |
+
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
|
72 |
+
example_title: zh-zh sentiment
|
73 |
+
- text: Suggest at least five related search terms to "Mạng neural nhân tạo".
|
74 |
+
example_title: vi-en query
|
75 |
+
- text: Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels».
|
76 |
+
example_title: fr-fr query
|
77 |
+
- text: Explain in a sentence in Telugu what is backpropagation in neural networks.
|
78 |
+
example_title: te-en qa
|
79 |
+
- text: Why is the sky blue?
|
80 |
+
example_title: en-en qa
|
81 |
+
- text: 'Write a fairy tale about a troll saving a princess from a dangerous dragon.
|
82 |
+
The fairy tale is a masterpiece that has achieved praise worldwide and its moral
|
83 |
+
is "Heroes Come in All Shapes and Sizes". Story (in Spanish):'
|
84 |
+
example_title: es-en fable
|
85 |
+
- text: 'Write a fable about wood elves living in a forest that is suddenly invaded
|
86 |
+
by ogres. The fable is a masterpiece that has achieved praise worldwide and its
|
87 |
+
moral is "Violence is the last refuge of the incompetent". Fable (in Hindi):'
|
88 |
+
example_title: hi-en fable
|
89 |
+
tags:
|
90 |
+
- TensorBlock
|
91 |
+
- GGUF
|
92 |
+
base_model: bigscience/bloomz-7b1-mt
|
93 |
+
model-index:
|
94 |
+
- name: bloomz-7b1-mt
|
95 |
+
results:
|
96 |
+
- task:
|
97 |
+
type: Coreference resolution
|
98 |
+
dataset:
|
99 |
+
name: Winogrande XL (xl)
|
100 |
+
type: winogrande
|
101 |
+
config: xl
|
102 |
+
split: validation
|
103 |
+
revision: a80f460359d1e9a67c006011c94de42a8759430c
|
104 |
+
metrics:
|
105 |
+
- type: Accuracy
|
106 |
+
value: 56.51
|
107 |
+
- task:
|
108 |
+
type: Coreference resolution
|
109 |
+
dataset:
|
110 |
+
name: XWinograd (en)
|
111 |
+
type: Muennighoff/xwinograd
|
112 |
+
config: en
|
113 |
+
split: test
|
114 |
+
revision: 9dd5ea5505fad86b7bedad667955577815300cee
|
115 |
+
metrics:
|
116 |
+
- type: Accuracy
|
117 |
+
value: 65.76
|
118 |
+
- task:
|
119 |
+
type: Coreference resolution
|
120 |
+
dataset:
|
121 |
+
name: XWinograd (fr)
|
122 |
+
type: Muennighoff/xwinograd
|
123 |
+
config: fr
|
124 |
+
split: test
|
125 |
+
revision: 9dd5ea5505fad86b7bedad667955577815300cee
|
126 |
+
metrics:
|
127 |
+
- type: Accuracy
|
128 |
+
value: 57.83
|
129 |
+
- task:
|
130 |
+
type: Coreference resolution
|
131 |
+
dataset:
|
132 |
+
name: XWinograd (jp)
|
133 |
+
type: Muennighoff/xwinograd
|
134 |
+
config: jp
|
135 |
+
split: test
|
136 |
+
revision: 9dd5ea5505fad86b7bedad667955577815300cee
|
137 |
+
metrics:
|
138 |
+
- type: Accuracy
|
139 |
+
value: 51.82
|
140 |
+
- task:
|
141 |
+
type: Coreference resolution
|
142 |
+
dataset:
|
143 |
+
name: XWinograd (pt)
|
144 |
+
type: Muennighoff/xwinograd
|
145 |
+
config: pt
|
146 |
+
split: test
|
147 |
+
revision: 9dd5ea5505fad86b7bedad667955577815300cee
|
148 |
+
metrics:
|
149 |
+
- type: Accuracy
|
150 |
+
value: 57.41
|
151 |
+
- task:
|
152 |
+
type: Coreference resolution
|
153 |
+
dataset:
|
154 |
+
name: XWinograd (ru)
|
155 |
+
type: Muennighoff/xwinograd
|
156 |
+
config: ru
|
157 |
+
split: test
|
158 |
+
revision: 9dd5ea5505fad86b7bedad667955577815300cee
|
159 |
+
metrics:
|
160 |
+
- type: Accuracy
|
161 |
+
value: 55.87
|
162 |
+
- task:
|
163 |
+
type: Coreference resolution
|
164 |
+
dataset:
|
165 |
+
name: XWinograd (zh)
|
166 |
+
type: Muennighoff/xwinograd
|
167 |
+
config: zh
|
168 |
+
split: test
|
169 |
+
revision: 9dd5ea5505fad86b7bedad667955577815300cee
|
170 |
+
metrics:
|
171 |
+
- type: Accuracy
|
172 |
+
value: 62.7
|
173 |
+
- task:
|
174 |
+
type: Natural language inference
|
175 |
+
dataset:
|
176 |
+
name: ANLI (r1)
|
177 |
+
type: anli
|
178 |
+
config: r1
|
179 |
+
split: validation
|
180 |
+
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
|
181 |
+
metrics:
|
182 |
+
- type: Accuracy
|
183 |
+
value: 42.6
|
184 |
+
- task:
|
185 |
+
type: Natural language inference
|
186 |
+
dataset:
|
187 |
+
name: ANLI (r2)
|
188 |
+
type: anli
|
189 |
+
config: r2
|
190 |
+
split: validation
|
191 |
+
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
|
192 |
+
metrics:
|
193 |
+
- type: Accuracy
|
194 |
+
value: 39.4
|
195 |
+
- task:
|
196 |
+
type: Natural language inference
|
197 |
+
dataset:
|
198 |
+
name: ANLI (r3)
|
199 |
+
type: anli
|
200 |
+
config: r3
|
201 |
+
split: validation
|
202 |
+
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
|
203 |
+
metrics:
|
204 |
+
- type: Accuracy
|
205 |
+
value: 42.0
|
206 |
+
- task:
|
207 |
+
type: Natural language inference
|
208 |
+
dataset:
|
209 |
+
name: SuperGLUE (cb)
|
210 |
+
type: super_glue
|
211 |
+
config: cb
|
212 |
+
split: validation
|
213 |
+
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
214 |
+
metrics:
|
215 |
+
- type: Accuracy
|
216 |
+
value: 83.93
|
217 |
+
- task:
|
218 |
+
type: Natural language inference
|
219 |
+
dataset:
|
220 |
+
name: SuperGLUE (rte)
|
221 |
+
type: super_glue
|
222 |
+
config: rte
|
223 |
+
split: validation
|
224 |
+
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
225 |
+
metrics:
|
226 |
+
- type: Accuracy
|
227 |
+
value: 82.67
|
228 |
+
- task:
|
229 |
+
type: Natural language inference
|
230 |
+
dataset:
|
231 |
+
name: XNLI (ar)
|
232 |
+
type: xnli
|
233 |
+
config: ar
|
234 |
+
split: validation
|
235 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
236 |
+
metrics:
|
237 |
+
- type: Accuracy
|
238 |
+
value: 55.58
|
239 |
+
- task:
|
240 |
+
type: Natural language inference
|
241 |
+
dataset:
|
242 |
+
name: XNLI (bg)
|
243 |
+
type: xnli
|
244 |
+
config: bg
|
245 |
+
split: validation
|
246 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
247 |
+
metrics:
|
248 |
+
- type: Accuracy
|
249 |
+
value: 44.9
|
250 |
+
- task:
|
251 |
+
type: Natural language inference
|
252 |
+
dataset:
|
253 |
+
name: XNLI (de)
|
254 |
+
type: xnli
|
255 |
+
config: de
|
256 |
+
split: validation
|
257 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
258 |
+
metrics:
|
259 |
+
- type: Accuracy
|
260 |
+
value: 48.92
|
261 |
+
- task:
|
262 |
+
type: Natural language inference
|
263 |
+
dataset:
|
264 |
+
name: XNLI (el)
|
265 |
+
type: xnli
|
266 |
+
config: el
|
267 |
+
split: validation
|
268 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
269 |
+
metrics:
|
270 |
+
- type: Accuracy
|
271 |
+
value: 42.89
|
272 |
+
- task:
|
273 |
+
type: Natural language inference
|
274 |
+
dataset:
|
275 |
+
name: XNLI (en)
|
276 |
+
type: xnli
|
277 |
+
config: en
|
278 |
+
split: validation
|
279 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
280 |
+
metrics:
|
281 |
+
- type: Accuracy
|
282 |
+
value: 58.92
|
283 |
+
- task:
|
284 |
+
type: Natural language inference
|
285 |
+
dataset:
|
286 |
+
name: XNLI (es)
|
287 |
+
type: xnli
|
288 |
+
config: es
|
289 |
+
split: validation
|
290 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
291 |
+
metrics:
|
292 |
+
- type: Accuracy
|
293 |
+
value: 57.35
|
294 |
+
- task:
|
295 |
+
type: Natural language inference
|
296 |
+
dataset:
|
297 |
+
name: XNLI (fr)
|
298 |
+
type: xnli
|
299 |
+
config: fr
|
300 |
+
split: validation
|
301 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
302 |
+
metrics:
|
303 |
+
- type: Accuracy
|
304 |
+
value: 56.67
|
305 |
+
- task:
|
306 |
+
type: Natural language inference
|
307 |
+
dataset:
|
308 |
+
name: XNLI (hi)
|
309 |
+
type: xnli
|
310 |
+
config: hi
|
311 |
+
split: validation
|
312 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
313 |
+
metrics:
|
314 |
+
- type: Accuracy
|
315 |
+
value: 53.45
|
316 |
+
- task:
|
317 |
+
type: Natural language inference
|
318 |
+
dataset:
|
319 |
+
name: XNLI (ru)
|
320 |
+
type: xnli
|
321 |
+
config: ru
|
322 |
+
split: validation
|
323 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
324 |
+
metrics:
|
325 |
+
- type: Accuracy
|
326 |
+
value: 50.24
|
327 |
+
- task:
|
328 |
+
type: Natural language inference
|
329 |
+
dataset:
|
330 |
+
name: XNLI (sw)
|
331 |
+
type: xnli
|
332 |
+
config: sw
|
333 |
+
split: validation
|
334 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
335 |
+
metrics:
|
336 |
+
- type: Accuracy
|
337 |
+
value: 48.27
|
338 |
+
- task:
|
339 |
+
type: Natural language inference
|
340 |
+
dataset:
|
341 |
+
name: XNLI (th)
|
342 |
+
type: xnli
|
343 |
+
config: th
|
344 |
+
split: validation
|
345 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
346 |
+
metrics:
|
347 |
+
- type: Accuracy
|
348 |
+
value: 41.08
|
349 |
+
- task:
|
350 |
+
type: Natural language inference
|
351 |
+
dataset:
|
352 |
+
name: XNLI (tr)
|
353 |
+
type: xnli
|
354 |
+
config: tr
|
355 |
+
split: validation
|
356 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
357 |
+
metrics:
|
358 |
+
- type: Accuracy
|
359 |
+
value: 38.71
|
360 |
+
- task:
|
361 |
+
type: Natural language inference
|
362 |
+
dataset:
|
363 |
+
name: XNLI (ur)
|
364 |
+
type: xnli
|
365 |
+
config: ur
|
366 |
+
split: validation
|
367 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
368 |
+
metrics:
|
369 |
+
- type: Accuracy
|
370 |
+
value: 49.48
|
371 |
+
- task:
|
372 |
+
type: Natural language inference
|
373 |
+
dataset:
|
374 |
+
name: XNLI (vi)
|
375 |
+
type: xnli
|
376 |
+
config: vi
|
377 |
+
split: validation
|
378 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
379 |
+
metrics:
|
380 |
+
- type: Accuracy
|
381 |
+
value: 54.5
|
382 |
+
- task:
|
383 |
+
type: Natural language inference
|
384 |
+
dataset:
|
385 |
+
name: XNLI (zh)
|
386 |
+
type: xnli
|
387 |
+
config: zh
|
388 |
+
split: validation
|
389 |
+
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
390 |
+
metrics:
|
391 |
+
- type: Accuracy
|
392 |
+
value: 54.3
|
393 |
+
- task:
|
394 |
+
type: Program synthesis
|
395 |
+
dataset:
|
396 |
+
name: HumanEval
|
397 |
+
type: openai_humaneval
|
398 |
+
config: None
|
399 |
+
split: test
|
400 |
+
revision: e8dc562f5de170c54b5481011dd9f4fa04845771
|
401 |
+
metrics:
|
402 |
+
- type: Pass@1
|
403 |
+
value: 7.23
|
404 |
+
- type: Pass@10
|
405 |
+
value: 14.46
|
406 |
+
- type: Pass@100
|
407 |
+
value: 25.86
|
408 |
+
- task:
|
409 |
+
type: Sentence completion
|
410 |
+
dataset:
|
411 |
+
name: StoryCloze (2016)
|
412 |
+
type: story_cloze
|
413 |
+
config: '2016'
|
414 |
+
split: validation
|
415 |
+
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
|
416 |
+
metrics:
|
417 |
+
- type: Accuracy
|
418 |
+
value: 89.58
|
419 |
+
- task:
|
420 |
+
type: Sentence completion
|
421 |
+
dataset:
|
422 |
+
name: SuperGLUE (copa)
|
423 |
+
type: super_glue
|
424 |
+
config: copa
|
425 |
+
split: validation
|
426 |
+
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
427 |
+
metrics:
|
428 |
+
- type: Accuracy
|
429 |
+
value: 84.0
|
430 |
+
- task:
|
431 |
+
type: Sentence completion
|
432 |
+
dataset:
|
433 |
+
name: XCOPA (et)
|
434 |
+
type: xcopa
|
435 |
+
config: et
|
436 |
+
split: validation
|
437 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
438 |
+
metrics:
|
439 |
+
- type: Accuracy
|
440 |
+
value: 52.0
|
441 |
+
- task:
|
442 |
+
type: Sentence completion
|
443 |
+
dataset:
|
444 |
+
name: XCOPA (ht)
|
445 |
+
type: xcopa
|
446 |
+
config: ht
|
447 |
+
split: validation
|
448 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
449 |
+
metrics:
|
450 |
+
- type: Accuracy
|
451 |
+
value: 54.0
|
452 |
+
- task:
|
453 |
+
type: Sentence completion
|
454 |
+
dataset:
|
455 |
+
name: XCOPA (id)
|
456 |
+
type: xcopa
|
457 |
+
config: id
|
458 |
+
split: validation
|
459 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
460 |
+
metrics:
|
461 |
+
- type: Accuracy
|
462 |
+
value: 73.0
|
463 |
+
- task:
|
464 |
+
type: Sentence completion
|
465 |
+
dataset:
|
466 |
+
name: XCOPA (it)
|
467 |
+
type: xcopa
|
468 |
+
config: it
|
469 |
+
split: validation
|
470 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
471 |
+
metrics:
|
472 |
+
- type: Accuracy
|
473 |
+
value: 62.0
|
474 |
+
- task:
|
475 |
+
type: Sentence completion
|
476 |
+
dataset:
|
477 |
+
name: XCOPA (qu)
|
478 |
+
type: xcopa
|
479 |
+
config: qu
|
480 |
+
split: validation
|
481 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
482 |
+
metrics:
|
483 |
+
- type: Accuracy
|
484 |
+
value: 61.0
|
485 |
+
- task:
|
486 |
+
type: Sentence completion
|
487 |
+
dataset:
|
488 |
+
name: XCOPA (sw)
|
489 |
+
type: xcopa
|
490 |
+
config: sw
|
491 |
+
split: validation
|
492 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
493 |
+
metrics:
|
494 |
+
- type: Accuracy
|
495 |
+
value: 61.0
|
496 |
+
- task:
|
497 |
+
type: Sentence completion
|
498 |
+
dataset:
|
499 |
+
name: XCOPA (ta)
|
500 |
+
type: xcopa
|
501 |
+
config: ta
|
502 |
+
split: validation
|
503 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
504 |
+
metrics:
|
505 |
+
- type: Accuracy
|
506 |
+
value: 62.0
|
507 |
+
- task:
|
508 |
+
type: Sentence completion
|
509 |
+
dataset:
|
510 |
+
name: XCOPA (th)
|
511 |
+
type: xcopa
|
512 |
+
config: th
|
513 |
+
split: validation
|
514 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
515 |
+
metrics:
|
516 |
+
- type: Accuracy
|
517 |
+
value: 61.0
|
518 |
+
- task:
|
519 |
+
type: Sentence completion
|
520 |
+
dataset:
|
521 |
+
name: XCOPA (tr)
|
522 |
+
type: xcopa
|
523 |
+
config: tr
|
524 |
+
split: validation
|
525 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
526 |
+
metrics:
|
527 |
+
- type: Accuracy
|
528 |
+
value: 56.0
|
529 |
+
- task:
|
530 |
+
type: Sentence completion
|
531 |
+
dataset:
|
532 |
+
name: XCOPA (vi)
|
533 |
+
type: xcopa
|
534 |
+
config: vi
|
535 |
+
split: validation
|
536 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
537 |
+
metrics:
|
538 |
+
- type: Accuracy
|
539 |
+
value: 77.0
|
540 |
+
- task:
|
541 |
+
type: Sentence completion
|
542 |
+
dataset:
|
543 |
+
name: XCOPA (zh)
|
544 |
+
type: xcopa
|
545 |
+
config: zh
|
546 |
+
split: validation
|
547 |
+
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
548 |
+
metrics:
|
549 |
+
- type: Accuracy
|
550 |
+
value: 80.0
|
551 |
+
- task:
|
552 |
+
type: Sentence completion
|
553 |
+
dataset:
|
554 |
+
name: XStoryCloze (ar)
|
555 |
+
type: Muennighoff/xstory_cloze
|
556 |
+
config: ar
|
557 |
+
split: validation
|
558 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
559 |
+
metrics:
|
560 |
+
- type: Accuracy
|
561 |
+
value: 83.85
|
562 |
+
- task:
|
563 |
+
type: Sentence completion
|
564 |
+
dataset:
|
565 |
+
name: XStoryCloze (es)
|
566 |
+
type: Muennighoff/xstory_cloze
|
567 |
+
config: es
|
568 |
+
split: validation
|
569 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
570 |
+
metrics:
|
571 |
+
- type: Accuracy
|
572 |
+
value: 88.82
|
573 |
+
- task:
|
574 |
+
type: Sentence completion
|
575 |
+
dataset:
|
576 |
+
name: XStoryCloze (eu)
|
577 |
+
type: Muennighoff/xstory_cloze
|
578 |
+
config: eu
|
579 |
+
split: validation
|
580 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
581 |
+
metrics:
|
582 |
+
- type: Accuracy
|
583 |
+
value: 73.26
|
584 |
+
- task:
|
585 |
+
type: Sentence completion
|
586 |
+
dataset:
|
587 |
+
name: XStoryCloze (hi)
|
588 |
+
type: Muennighoff/xstory_cloze
|
589 |
+
config: hi
|
590 |
+
split: validation
|
591 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
592 |
+
metrics:
|
593 |
+
- type: Accuracy
|
594 |
+
value: 80.41
|
595 |
+
- task:
|
596 |
+
type: Sentence completion
|
597 |
+
dataset:
|
598 |
+
name: XStoryCloze (id)
|
599 |
+
type: Muennighoff/xstory_cloze
|
600 |
+
config: id
|
601 |
+
split: validation
|
602 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
603 |
+
metrics:
|
604 |
+
- type: Accuracy
|
605 |
+
value: 84.58
|
606 |
+
- task:
|
607 |
+
type: Sentence completion
|
608 |
+
dataset:
|
609 |
+
name: XStoryCloze (my)
|
610 |
+
type: Muennighoff/xstory_cloze
|
611 |
+
config: my
|
612 |
+
split: validation
|
613 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
614 |
+
metrics:
|
615 |
+
- type: Accuracy
|
616 |
+
value: 51.56
|
617 |
+
- task:
|
618 |
+
type: Sentence completion
|
619 |
+
dataset:
|
620 |
+
name: XStoryCloze (ru)
|
621 |
+
type: Muennighoff/xstory_cloze
|
622 |
+
config: ru
|
623 |
+
split: validation
|
624 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
625 |
+
metrics:
|
626 |
+
- type: Accuracy
|
627 |
+
value: 64.26
|
628 |
+
- task:
|
629 |
+
type: Sentence completion
|
630 |
+
dataset:
|
631 |
+
name: XStoryCloze (sw)
|
632 |
+
type: Muennighoff/xstory_cloze
|
633 |
+
config: sw
|
634 |
+
split: validation
|
635 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
636 |
+
metrics:
|
637 |
+
- type: Accuracy
|
638 |
+
value: 71.01
|
639 |
+
- task:
|
640 |
+
type: Sentence completion
|
641 |
+
dataset:
|
642 |
+
name: XStoryCloze (te)
|
643 |
+
type: Muennighoff/xstory_cloze
|
644 |
+
config: te
|
645 |
+
split: validation
|
646 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
647 |
+
metrics:
|
648 |
+
- type: Accuracy
|
649 |
+
value: 73.06
|
650 |
+
- task:
|
651 |
+
type: Sentence completion
|
652 |
+
dataset:
|
653 |
+
name: XStoryCloze (zh)
|
654 |
+
type: Muennighoff/xstory_cloze
|
655 |
+
config: zh
|
656 |
+
split: validation
|
657 |
+
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
658 |
+
metrics:
|
659 |
+
- type: Accuracy
|
660 |
+
value: 85.9
|
661 |
+
---
|
662 |
+
|
663 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
664 |
+
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
665 |
+
</div>
|
666 |
+
<div style="display: flex; justify-content: space-between; width: 100%;">
|
667 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
668 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;">
|
669 |
+
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
|
670 |
+
</p>
|
671 |
+
</div>
|
672 |
+
</div>
|
673 |
+
|
674 |
+
## bigscience/bloomz-7b1-mt - GGUF
|
675 |
+
|
676 |
+
This repo contains GGUF format model files for [bigscience/bloomz-7b1-mt](https://huggingface.co/bigscience/bloomz-7b1-mt).
|
677 |
+
|
678 |
+
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
|
679 |
+
|
680 |
+
## Prompt template
|
681 |
+
|
682 |
+
```
|
683 |
+
|
684 |
+
```
|
685 |
+
|
686 |
+
## Model file specification
|
687 |
+
|
688 |
+
| Filename | Quant type | File Size | Description |
|
689 |
+
| -------- | ---------- | --------- | ----------- |
|
690 |
+
| [bloomz-7b1-mt-Q2_K.gguf](https://huggingface.co/tensorblock/bloomz-7b1-mt-GGUF/tree/main/bloomz-7b1-mt-Q2_K.gguf) | Q2_K | 3.201 GB | smallest, significant quality loss - not recommended for most purposes |
|
691 |
+
| [bloomz-7b1-mt-Q3_K_S.gguf](https://huggingface.co/tensorblock/bloomz-7b1-mt-GGUF/tree/main/bloomz-7b1-mt-Q3_K_S.gguf) | Q3_K_S | 3.631 GB | very small, high quality loss |
|
692 |
+
| [bloomz-7b1-mt-Q3_K_M.gguf](https://huggingface.co/tensorblock/bloomz-7b1-mt-GGUF/tree/main/bloomz-7b1-mt-Q3_K_M.gguf) | Q3_K_M | 4.137 GB | very small, high quality loss |
|
693 |
+
| [bloomz-7b1-mt-Q3_K_L.gguf](https://huggingface.co/tensorblock/bloomz-7b1-mt-GGUF/tree/main/bloomz-7b1-mt-Q3_K_L.gguf) | Q3_K_L | 4.422 GB | small, substantial quality loss |
|
694 |
+
| [bloomz-7b1-mt-Q4_0.gguf](https://huggingface.co/tensorblock/bloomz-7b1-mt-GGUF/tree/main/bloomz-7b1-mt-Q4_0.gguf) | Q4_0 | 4.505 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
|
695 |
+
| [bloomz-7b1-mt-Q4_K_S.gguf](https://huggingface.co/tensorblock/bloomz-7b1-mt-GGUF/tree/main/bloomz-7b1-mt-Q4_K_S.gguf) | Q4_K_S | 4.529 GB | small, greater quality loss |
|
696 |
+
| [bloomz-7b1-mt-Q4_K_M.gguf](https://huggingface.co/tensorblock/bloomz-7b1-mt-GGUF/tree/main/bloomz-7b1-mt-Q4_K_M.gguf) | Q4_K_M | 4.907 GB | medium, balanced quality - recommended |
|
697 |
+
| [bloomz-7b1-mt-Q5_0.gguf](https://huggingface.co/tensorblock/bloomz-7b1-mt-GGUF/tree/main/bloomz-7b1-mt-Q5_0.gguf) | Q5_0 | 5.328 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
|
698 |
+
| [bloomz-7b1-mt-Q5_K_S.gguf](https://huggingface.co/tensorblock/bloomz-7b1-mt-GGUF/tree/main/bloomz-7b1-mt-Q5_K_S.gguf) | Q5_K_S | 5.328 GB | large, low quality loss - recommended |
|
699 |
+
| [bloomz-7b1-mt-Q5_K_M.gguf](https://huggingface.co/tensorblock/bloomz-7b1-mt-GGUF/tree/main/bloomz-7b1-mt-Q5_K_M.gguf) | Q5_K_M | 5.631 GB | large, very low quality loss - recommended |
|
700 |
+
| [bloomz-7b1-mt-Q6_K.gguf](https://huggingface.co/tensorblock/bloomz-7b1-mt-GGUF/tree/main/bloomz-7b1-mt-Q6_K.gguf) | Q6_K | 6.202 GB | very large, extremely low quality loss |
|
701 |
+
| [bloomz-7b1-mt-Q8_0.gguf](https://huggingface.co/tensorblock/bloomz-7b1-mt-GGUF/tree/main/bloomz-7b1-mt-Q8_0.gguf) | Q8_0 | 8.028 GB | very large, extremely low quality loss - not recommended |
|
702 |
+
|
703 |
+
|
704 |
+
## Downloading instruction
|
705 |
+
|
706 |
+
### Command line
|
707 |
+
|
708 |
+
Firstly, install Huggingface Client
|
709 |
+
|
710 |
+
```shell
|
711 |
+
pip install -U "huggingface_hub[cli]"
|
712 |
+
```
|
713 |
+
|
714 |
+
Then, downoad the individual model file the a local directory
|
715 |
+
|
716 |
+
```shell
|
717 |
+
huggingface-cli download tensorblock/bloomz-7b1-mt-GGUF --include "bloomz-7b1-mt-Q2_K.gguf" --local-dir MY_LOCAL_DIR
|
718 |
+
```
|
719 |
+
|
720 |
+
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
|
721 |
+
|
722 |
+
```shell
|
723 |
+
huggingface-cli download tensorblock/bloomz-7b1-mt-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
|
724 |
+
```
|
bloomz-7b1-mt-Q2_K.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3364f5eb3f4c6e2620b01202f70873877ac6b0ca69cafb45b77d08c8ba8f6e82
|
3 |
+
size 3436620704
|
bloomz-7b1-mt-Q3_K_L.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e48e735ba2686fbe9e5ea2d7c0db70026344b54de9a8a7048c906a1f036b3d59
|
3 |
+
size 4748159904
|
bloomz-7b1-mt-Q3_K_M.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49bf32d213cf8d323c2f7ab26464195e8e540a282ad54bc04ffc23164b3e1b12
|
3 |
+
size 4441975712
|
bloomz-7b1-mt-Q3_K_S.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f18ed94e639079432be38c85aa25c67fb3737af9eae904b0234aec419506553
|
3 |
+
size 3898813344
|
bloomz-7b1-mt-Q4_0.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17a482720ac59642e09e80aa27c0cfa2c58cd03344498dfc9b66697f8b171f4e
|
3 |
+
size 4837452704
|
bloomz-7b1-mt-Q4_K_M.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5ad9e2230a819fc15020c6d8d50c6f498734a4cbd7dc35547370f802525e08d
|
3 |
+
size 5268417440
|
bloomz-7b1-mt-Q4_K_S.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12f11b3698eb56004819fbc136bf0211df02e615d2eddf95bd906c90048dbe1b
|
3 |
+
size 4862618528
|
bloomz-7b1-mt-Q5_0.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b98e88c2167ab4d99b7ca6569b2f7ec25e5607370a36ab230aa075fac3d6bf0
|
3 |
+
size 5720877984
|
bloomz-7b1-mt-Q5_K_M.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d134feed07afb1bd812169e08d0fe1c0671e880a6aeb3210dba0ff7faeda0e36
|
3 |
+
size 6046198688
|
bloomz-7b1-mt-Q5_K_S.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ad007fc2d3c716cb7cfdf7f4c0824620b3c7e7f2468704aa7ae9f3dfc6fe273
|
3 |
+
size 5720877984
|
bloomz-7b1-mt-Q6_K.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4a31d12750721ffddffe5c0a6bb8bdc8ae58b96712afba7222ac4e8b345ec74
|
3 |
+
size 6659517344
|
bloomz-7b1-mt-Q8_0.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ca96b98600c7e6498a4b5b2c589372ec61932b3130280e258033512c405855d
|
3 |
+
size 8620026784
|