morriszms's picture
Upload folder using huggingface_hub
e820ac4 verified
metadata
language:
  - en
library_name: transformers
license: apache-2.0
tags:
  - unsloth
  - transformers
  - mistral
  - mistral-instruct
  - instruct
  - TensorBlock
  - GGUF
base_model: unsloth/Mistral-Small-24B-Base-2501
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

unsloth/Mistral-Small-24B-Base-2501 - GGUF

This repo contains GGUF format model files for unsloth/Mistral-Small-24B-Base-2501.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4823.

Prompt template

Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format.

Model file specification

Filename Quant type File Size Description
Mistral-Small-24B-Base-2501-Q2_K.gguf Q2_K 8.890 GB smallest, significant quality loss - not recommended for most purposes
Mistral-Small-24B-Base-2501-Q3_K_S.gguf Q3_K_S 10.400 GB very small, high quality loss
Mistral-Small-24B-Base-2501-Q3_K_M.gguf Q3_K_M 11.474 GB very small, high quality loss
Mistral-Small-24B-Base-2501-Q3_K_L.gguf Q3_K_L 12.401 GB small, substantial quality loss
Mistral-Small-24B-Base-2501-Q4_0.gguf Q4_0 13.442 GB legacy; small, very high quality loss - prefer using Q3_K_M
Mistral-Small-24B-Base-2501-Q4_K_S.gguf Q4_K_S 13.549 GB small, greater quality loss
Mistral-Small-24B-Base-2501-Q4_K_M.gguf Q4_K_M 14.334 GB medium, balanced quality - recommended
Mistral-Small-24B-Base-2501-Q5_0.gguf Q5_0 16.304 GB legacy; medium, balanced quality - prefer using Q4_K_M
Mistral-Small-24B-Base-2501-Q5_K_S.gguf Q5_K_S 16.304 GB large, low quality loss - recommended
Mistral-Small-24B-Base-2501-Q5_K_M.gguf Q5_K_M 16.764 GB large, very low quality loss - recommended
Mistral-Small-24B-Base-2501-Q6_K.gguf Q6_K 19.346 GB very large, extremely low quality loss
Mistral-Small-24B-Base-2501-Q8_0.gguf Q8_0 25.055 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Mistral-Small-24B-Base-2501-GGUF --include "Mistral-Small-24B-Base-2501-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Mistral-Small-24B-Base-2501-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'