morriszms commited on
Commit
7139f8a
1 Parent(s): da99e41

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,15 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ GritLM-7B-Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
37
+ GritLM-7B-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
38
+ GritLM-7B-Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
39
+ GritLM-7B-Q3_K_S.gguf filter=lfs diff=lfs merge=lfs -text
40
+ GritLM-7B-Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
41
+ GritLM-7B-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
42
+ GritLM-7B-Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
43
+ GritLM-7B-Q5_0.gguf filter=lfs diff=lfs merge=lfs -text
44
+ GritLM-7B-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
45
+ GritLM-7B-Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
46
+ GritLM-7B-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
47
+ GritLM-7B-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
GritLM-7B-Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9be187d3a6eb9b54d1609226e3ac8ed08def279c078e27965a37780f4c9203b7
3
+ size 2719242752
GritLM-7B-Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f29288677e59bc95d0b975feaf372954e7e112a0cfee2d89d9dbb2445198edb9
3
+ size 3822025216
GritLM-7B-Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bb0ab2cab0ec8388b9cf78d9fa32b7c697a5082161ce4654d2fad305e0a68b1
3
+ size 3518986752
GritLM-7B-Q3_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b40e67767cc3706ffe550924af1a8a58c1315376a275fe706a4d2e351a7418c
3
+ size 3164568064
GritLM-7B-Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f4137a9e6ccf4784de49a5ff4dad87c3ffebc3e8aac4456bf4c366e88555c0b
3
+ size 4108917248
GritLM-7B-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:403e6b6ee7d655bd201b7f889cbe1cc33088d1e9af419d30cccfa766a2ab656f
3
+ size 4368439808
GritLM-7B-Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c7882b56d682ef5a53e0c14d38dfe65f39a8e8826e3354c6bebd212f92dbb27
3
+ size 4140374528
GritLM-7B-Q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f94ae23bc51b64f4ab0b3e94bb98f88c51d528f4d6352eae7fe4ff3ad42c0522
3
+ size 4997716480
GritLM-7B-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d97d108a1fe94234e2ee607872b70f75e3dc304e488384b3eb15dc08c0f0b345
3
+ size 5131409920
GritLM-7B-Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9958efd4c538f1d3fa1e0956a806b20be01aeab60e4ca32e71d242fd37c1403c
3
+ size 4997716480
GritLM-7B-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe8e909d254b74c23993bd5ef67e9b884f1dd2278d3ab94baf988eee9695ce40
3
+ size 5942065664
GritLM-7B-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e6e1f0b4370a4f75ab0291c3950092de75d8357b46c7618dae6c0e00771f147
3
+ size 7695858176
README.md ADDED
@@ -0,0 +1,2564 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ inference: true
4
+ license: apache-2.0
5
+ datasets:
6
+ - GritLM/tulu2
7
+ tags:
8
+ - mteb
9
+ - TensorBlock
10
+ - GGUF
11
+ base_model: GritLM/GritLM-7B
12
+ model-index:
13
+ - name: GritLM-7B
14
+ results:
15
+ - task:
16
+ type: Classification
17
+ dataset:
18
+ name: MTEB AmazonCounterfactualClassification (en)
19
+ type: mteb/amazon_counterfactual
20
+ config: en
21
+ split: test
22
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
23
+ metrics:
24
+ - type: accuracy
25
+ value: 81.17910447761194
26
+ - type: ap
27
+ value: 46.26260671758199
28
+ - type: f1
29
+ value: 75.44565719934167
30
+ - task:
31
+ type: Classification
32
+ dataset:
33
+ name: MTEB AmazonPolarityClassification
34
+ type: mteb/amazon_polarity
35
+ config: default
36
+ split: test
37
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
38
+ metrics:
39
+ - type: accuracy
40
+ value: 96.5161
41
+ - type: ap
42
+ value: 94.79131981460425
43
+ - type: f1
44
+ value: 96.51506148413065
45
+ - task:
46
+ type: Classification
47
+ dataset:
48
+ name: MTEB AmazonReviewsClassification (en)
49
+ type: mteb/amazon_reviews_multi
50
+ config: en
51
+ split: test
52
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
53
+ metrics:
54
+ - type: accuracy
55
+ value: 57.806000000000004
56
+ - type: f1
57
+ value: 56.78350156257903
58
+ - task:
59
+ type: Retrieval
60
+ dataset:
61
+ name: MTEB ArguAna
62
+ type: arguana
63
+ config: default
64
+ split: test
65
+ revision: None
66
+ metrics:
67
+ - type: map_at_1
68
+ value: 38.478
69
+ - type: map_at_10
70
+ value: 54.955
71
+ - type: map_at_100
72
+ value: 54.955
73
+ - type: map_at_1000
74
+ value: 54.955
75
+ - type: map_at_3
76
+ value: 50.888999999999996
77
+ - type: map_at_5
78
+ value: 53.349999999999994
79
+ - type: mrr_at_1
80
+ value: 39.757999999999996
81
+ - type: mrr_at_10
82
+ value: 55.449000000000005
83
+ - type: mrr_at_100
84
+ value: 55.449000000000005
85
+ - type: mrr_at_1000
86
+ value: 55.449000000000005
87
+ - type: mrr_at_3
88
+ value: 51.37500000000001
89
+ - type: mrr_at_5
90
+ value: 53.822
91
+ - type: ndcg_at_1
92
+ value: 38.478
93
+ - type: ndcg_at_10
94
+ value: 63.239999999999995
95
+ - type: ndcg_at_100
96
+ value: 63.239999999999995
97
+ - type: ndcg_at_1000
98
+ value: 63.239999999999995
99
+ - type: ndcg_at_3
100
+ value: 54.935
101
+ - type: ndcg_at_5
102
+ value: 59.379000000000005
103
+ - type: precision_at_1
104
+ value: 38.478
105
+ - type: precision_at_10
106
+ value: 8.933
107
+ - type: precision_at_100
108
+ value: 0.893
109
+ - type: precision_at_1000
110
+ value: 0.089
111
+ - type: precision_at_3
112
+ value: 22.214
113
+ - type: precision_at_5
114
+ value: 15.491
115
+ - type: recall_at_1
116
+ value: 38.478
117
+ - type: recall_at_10
118
+ value: 89.331
119
+ - type: recall_at_100
120
+ value: 89.331
121
+ - type: recall_at_1000
122
+ value: 89.331
123
+ - type: recall_at_3
124
+ value: 66.643
125
+ - type: recall_at_5
126
+ value: 77.45400000000001
127
+ - task:
128
+ type: Clustering
129
+ dataset:
130
+ name: MTEB ArxivClusteringP2P
131
+ type: mteb/arxiv-clustering-p2p
132
+ config: default
133
+ split: test
134
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
135
+ metrics:
136
+ - type: v_measure
137
+ value: 51.67144081472449
138
+ - task:
139
+ type: Clustering
140
+ dataset:
141
+ name: MTEB ArxivClusteringS2S
142
+ type: mteb/arxiv-clustering-s2s
143
+ config: default
144
+ split: test
145
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
146
+ metrics:
147
+ - type: v_measure
148
+ value: 48.11256154264126
149
+ - task:
150
+ type: Reranking
151
+ dataset:
152
+ name: MTEB AskUbuntuDupQuestions
153
+ type: mteb/askubuntudupquestions-reranking
154
+ config: default
155
+ split: test
156
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
157
+ metrics:
158
+ - type: map
159
+ value: 67.33801955487878
160
+ - type: mrr
161
+ value: 80.71549487754474
162
+ - task:
163
+ type: STS
164
+ dataset:
165
+ name: MTEB BIOSSES
166
+ type: mteb/biosses-sts
167
+ config: default
168
+ split: test
169
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
170
+ metrics:
171
+ - type: cos_sim_pearson
172
+ value: 88.1935203751726
173
+ - type: cos_sim_spearman
174
+ value: 86.35497970498659
175
+ - type: euclidean_pearson
176
+ value: 85.46910708503744
177
+ - type: euclidean_spearman
178
+ value: 85.13928935405485
179
+ - type: manhattan_pearson
180
+ value: 85.68373836333303
181
+ - type: manhattan_spearman
182
+ value: 85.40013867117746
183
+ - task:
184
+ type: Classification
185
+ dataset:
186
+ name: MTEB Banking77Classification
187
+ type: mteb/banking77
188
+ config: default
189
+ split: test
190
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
191
+ metrics:
192
+ - type: accuracy
193
+ value: 88.46753246753248
194
+ - type: f1
195
+ value: 88.43006344981134
196
+ - task:
197
+ type: Clustering
198
+ dataset:
199
+ name: MTEB BiorxivClusteringP2P
200
+ type: mteb/biorxiv-clustering-p2p
201
+ config: default
202
+ split: test
203
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
204
+ metrics:
205
+ - type: v_measure
206
+ value: 40.86793640310432
207
+ - task:
208
+ type: Clustering
209
+ dataset:
210
+ name: MTEB BiorxivClusteringS2S
211
+ type: mteb/biorxiv-clustering-s2s
212
+ config: default
213
+ split: test
214
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
215
+ metrics:
216
+ - type: v_measure
217
+ value: 39.80291334130727
218
+ - task:
219
+ type: Retrieval
220
+ dataset:
221
+ name: MTEB CQADupstackAndroidRetrieval
222
+ type: BeIR/cqadupstack
223
+ config: default
224
+ split: test
225
+ revision: None
226
+ metrics:
227
+ - type: map_at_1
228
+ value: 38.421
229
+ - type: map_at_10
230
+ value: 52.349000000000004
231
+ - type: map_at_100
232
+ value: 52.349000000000004
233
+ - type: map_at_1000
234
+ value: 52.349000000000004
235
+ - type: map_at_3
236
+ value: 48.17
237
+ - type: map_at_5
238
+ value: 50.432
239
+ - type: mrr_at_1
240
+ value: 47.353
241
+ - type: mrr_at_10
242
+ value: 58.387
243
+ - type: mrr_at_100
244
+ value: 58.387
245
+ - type: mrr_at_1000
246
+ value: 58.387
247
+ - type: mrr_at_3
248
+ value: 56.199
249
+ - type: mrr_at_5
250
+ value: 57.487
251
+ - type: ndcg_at_1
252
+ value: 47.353
253
+ - type: ndcg_at_10
254
+ value: 59.202
255
+ - type: ndcg_at_100
256
+ value: 58.848
257
+ - type: ndcg_at_1000
258
+ value: 58.831999999999994
259
+ - type: ndcg_at_3
260
+ value: 54.112
261
+ - type: ndcg_at_5
262
+ value: 56.312
263
+ - type: precision_at_1
264
+ value: 47.353
265
+ - type: precision_at_10
266
+ value: 11.459
267
+ - type: precision_at_100
268
+ value: 1.146
269
+ - type: precision_at_1000
270
+ value: 0.11499999999999999
271
+ - type: precision_at_3
272
+ value: 26.133
273
+ - type: precision_at_5
274
+ value: 18.627
275
+ - type: recall_at_1
276
+ value: 38.421
277
+ - type: recall_at_10
278
+ value: 71.89
279
+ - type: recall_at_100
280
+ value: 71.89
281
+ - type: recall_at_1000
282
+ value: 71.89
283
+ - type: recall_at_3
284
+ value: 56.58
285
+ - type: recall_at_5
286
+ value: 63.125
287
+ - type: map_at_1
288
+ value: 38.025999999999996
289
+ - type: map_at_10
290
+ value: 50.590999999999994
291
+ - type: map_at_100
292
+ value: 51.99700000000001
293
+ - type: map_at_1000
294
+ value: 52.11599999999999
295
+ - type: map_at_3
296
+ value: 47.435
297
+ - type: map_at_5
298
+ value: 49.236000000000004
299
+ - type: mrr_at_1
300
+ value: 48.28
301
+ - type: mrr_at_10
302
+ value: 56.814
303
+ - type: mrr_at_100
304
+ value: 57.446
305
+ - type: mrr_at_1000
306
+ value: 57.476000000000006
307
+ - type: mrr_at_3
308
+ value: 54.958
309
+ - type: mrr_at_5
310
+ value: 56.084999999999994
311
+ - type: ndcg_at_1
312
+ value: 48.28
313
+ - type: ndcg_at_10
314
+ value: 56.442
315
+ - type: ndcg_at_100
316
+ value: 60.651999999999994
317
+ - type: ndcg_at_1000
318
+ value: 62.187000000000005
319
+ - type: ndcg_at_3
320
+ value: 52.866
321
+ - type: ndcg_at_5
322
+ value: 54.515
323
+ - type: precision_at_1
324
+ value: 48.28
325
+ - type: precision_at_10
326
+ value: 10.586
327
+ - type: precision_at_100
328
+ value: 1.6310000000000002
329
+ - type: precision_at_1000
330
+ value: 0.20600000000000002
331
+ - type: precision_at_3
332
+ value: 25.945
333
+ - type: precision_at_5
334
+ value: 18.076
335
+ - type: recall_at_1
336
+ value: 38.025999999999996
337
+ - type: recall_at_10
338
+ value: 66.11399999999999
339
+ - type: recall_at_100
340
+ value: 83.339
341
+ - type: recall_at_1000
342
+ value: 92.413
343
+ - type: recall_at_3
344
+ value: 54.493
345
+ - type: recall_at_5
346
+ value: 59.64699999999999
347
+ - type: map_at_1
348
+ value: 47.905
349
+ - type: map_at_10
350
+ value: 61.58
351
+ - type: map_at_100
352
+ value: 62.605
353
+ - type: map_at_1000
354
+ value: 62.637
355
+ - type: map_at_3
356
+ value: 58.074000000000005
357
+ - type: map_at_5
358
+ value: 60.260000000000005
359
+ - type: mrr_at_1
360
+ value: 54.42
361
+ - type: mrr_at_10
362
+ value: 64.847
363
+ - type: mrr_at_100
364
+ value: 65.403
365
+ - type: mrr_at_1000
366
+ value: 65.41900000000001
367
+ - type: mrr_at_3
368
+ value: 62.675000000000004
369
+ - type: mrr_at_5
370
+ value: 64.101
371
+ - type: ndcg_at_1
372
+ value: 54.42
373
+ - type: ndcg_at_10
374
+ value: 67.394
375
+ - type: ndcg_at_100
376
+ value: 70.846
377
+ - type: ndcg_at_1000
378
+ value: 71.403
379
+ - type: ndcg_at_3
380
+ value: 62.025
381
+ - type: ndcg_at_5
382
+ value: 65.032
383
+ - type: precision_at_1
384
+ value: 54.42
385
+ - type: precision_at_10
386
+ value: 10.646
387
+ - type: precision_at_100
388
+ value: 1.325
389
+ - type: precision_at_1000
390
+ value: 0.13999999999999999
391
+ - type: precision_at_3
392
+ value: 27.398
393
+ - type: precision_at_5
394
+ value: 18.796
395
+ - type: recall_at_1
396
+ value: 47.905
397
+ - type: recall_at_10
398
+ value: 80.84599999999999
399
+ - type: recall_at_100
400
+ value: 95.078
401
+ - type: recall_at_1000
402
+ value: 98.878
403
+ - type: recall_at_3
404
+ value: 67.05600000000001
405
+ - type: recall_at_5
406
+ value: 74.261
407
+ - type: map_at_1
408
+ value: 30.745
409
+ - type: map_at_10
410
+ value: 41.021
411
+ - type: map_at_100
412
+ value: 41.021
413
+ - type: map_at_1000
414
+ value: 41.021
415
+ - type: map_at_3
416
+ value: 37.714999999999996
417
+ - type: map_at_5
418
+ value: 39.766
419
+ - type: mrr_at_1
420
+ value: 33.559
421
+ - type: mrr_at_10
422
+ value: 43.537
423
+ - type: mrr_at_100
424
+ value: 43.537
425
+ - type: mrr_at_1000
426
+ value: 43.537
427
+ - type: mrr_at_3
428
+ value: 40.546
429
+ - type: mrr_at_5
430
+ value: 42.439
431
+ - type: ndcg_at_1
432
+ value: 33.559
433
+ - type: ndcg_at_10
434
+ value: 46.781
435
+ - type: ndcg_at_100
436
+ value: 46.781
437
+ - type: ndcg_at_1000
438
+ value: 46.781
439
+ - type: ndcg_at_3
440
+ value: 40.516000000000005
441
+ - type: ndcg_at_5
442
+ value: 43.957
443
+ - type: precision_at_1
444
+ value: 33.559
445
+ - type: precision_at_10
446
+ value: 7.198
447
+ - type: precision_at_100
448
+ value: 0.72
449
+ - type: precision_at_1000
450
+ value: 0.07200000000000001
451
+ - type: precision_at_3
452
+ value: 17.1
453
+ - type: precision_at_5
454
+ value: 12.316
455
+ - type: recall_at_1
456
+ value: 30.745
457
+ - type: recall_at_10
458
+ value: 62.038000000000004
459
+ - type: recall_at_100
460
+ value: 62.038000000000004
461
+ - type: recall_at_1000
462
+ value: 62.038000000000004
463
+ - type: recall_at_3
464
+ value: 45.378
465
+ - type: recall_at_5
466
+ value: 53.580000000000005
467
+ - type: map_at_1
468
+ value: 19.637999999999998
469
+ - type: map_at_10
470
+ value: 31.05
471
+ - type: map_at_100
472
+ value: 31.05
473
+ - type: map_at_1000
474
+ value: 31.05
475
+ - type: map_at_3
476
+ value: 27.628000000000004
477
+ - type: map_at_5
478
+ value: 29.767
479
+ - type: mrr_at_1
480
+ value: 25.0
481
+ - type: mrr_at_10
482
+ value: 36.131
483
+ - type: mrr_at_100
484
+ value: 36.131
485
+ - type: mrr_at_1000
486
+ value: 36.131
487
+ - type: mrr_at_3
488
+ value: 33.333
489
+ - type: mrr_at_5
490
+ value: 35.143
491
+ - type: ndcg_at_1
492
+ value: 25.0
493
+ - type: ndcg_at_10
494
+ value: 37.478
495
+ - type: ndcg_at_100
496
+ value: 37.469
497
+ - type: ndcg_at_1000
498
+ value: 37.469
499
+ - type: ndcg_at_3
500
+ value: 31.757999999999996
501
+ - type: ndcg_at_5
502
+ value: 34.821999999999996
503
+ - type: precision_at_1
504
+ value: 25.0
505
+ - type: precision_at_10
506
+ value: 7.188999999999999
507
+ - type: precision_at_100
508
+ value: 0.719
509
+ - type: precision_at_1000
510
+ value: 0.07200000000000001
511
+ - type: precision_at_3
512
+ value: 15.837000000000002
513
+ - type: precision_at_5
514
+ value: 11.841
515
+ - type: recall_at_1
516
+ value: 19.637999999999998
517
+ - type: recall_at_10
518
+ value: 51.836000000000006
519
+ - type: recall_at_100
520
+ value: 51.836000000000006
521
+ - type: recall_at_1000
522
+ value: 51.836000000000006
523
+ - type: recall_at_3
524
+ value: 36.384
525
+ - type: recall_at_5
526
+ value: 43.964
527
+ - type: map_at_1
528
+ value: 34.884
529
+ - type: map_at_10
530
+ value: 47.88
531
+ - type: map_at_100
532
+ value: 47.88
533
+ - type: map_at_1000
534
+ value: 47.88
535
+ - type: map_at_3
536
+ value: 43.85
537
+ - type: map_at_5
538
+ value: 46.414
539
+ - type: mrr_at_1
540
+ value: 43.022
541
+ - type: mrr_at_10
542
+ value: 53.569
543
+ - type: mrr_at_100
544
+ value: 53.569
545
+ - type: mrr_at_1000
546
+ value: 53.569
547
+ - type: mrr_at_3
548
+ value: 51.075
549
+ - type: mrr_at_5
550
+ value: 52.725
551
+ - type: ndcg_at_1
552
+ value: 43.022
553
+ - type: ndcg_at_10
554
+ value: 54.461000000000006
555
+ - type: ndcg_at_100
556
+ value: 54.388000000000005
557
+ - type: ndcg_at_1000
558
+ value: 54.388000000000005
559
+ - type: ndcg_at_3
560
+ value: 48.864999999999995
561
+ - type: ndcg_at_5
562
+ value: 52.032000000000004
563
+ - type: precision_at_1
564
+ value: 43.022
565
+ - type: precision_at_10
566
+ value: 9.885
567
+ - type: precision_at_100
568
+ value: 0.988
569
+ - type: precision_at_1000
570
+ value: 0.099
571
+ - type: precision_at_3
572
+ value: 23.612
573
+ - type: precision_at_5
574
+ value: 16.997
575
+ - type: recall_at_1
576
+ value: 34.884
577
+ - type: recall_at_10
578
+ value: 68.12899999999999
579
+ - type: recall_at_100
580
+ value: 68.12899999999999
581
+ - type: recall_at_1000
582
+ value: 68.12899999999999
583
+ - type: recall_at_3
584
+ value: 52.428
585
+ - type: recall_at_5
586
+ value: 60.662000000000006
587
+ - type: map_at_1
588
+ value: 31.588
589
+ - type: map_at_10
590
+ value: 43.85
591
+ - type: map_at_100
592
+ value: 45.317
593
+ - type: map_at_1000
594
+ value: 45.408
595
+ - type: map_at_3
596
+ value: 39.73
597
+ - type: map_at_5
598
+ value: 42.122
599
+ - type: mrr_at_1
600
+ value: 38.927
601
+ - type: mrr_at_10
602
+ value: 49.582
603
+ - type: mrr_at_100
604
+ value: 50.39
605
+ - type: mrr_at_1000
606
+ value: 50.426
607
+ - type: mrr_at_3
608
+ value: 46.518
609
+ - type: mrr_at_5
610
+ value: 48.271
611
+ - type: ndcg_at_1
612
+ value: 38.927
613
+ - type: ndcg_at_10
614
+ value: 50.605999999999995
615
+ - type: ndcg_at_100
616
+ value: 56.22200000000001
617
+ - type: ndcg_at_1000
618
+ value: 57.724
619
+ - type: ndcg_at_3
620
+ value: 44.232
621
+ - type: ndcg_at_5
622
+ value: 47.233999999999995
623
+ - type: precision_at_1
624
+ value: 38.927
625
+ - type: precision_at_10
626
+ value: 9.429
627
+ - type: precision_at_100
628
+ value: 1.435
629
+ - type: precision_at_1000
630
+ value: 0.172
631
+ - type: precision_at_3
632
+ value: 21.271
633
+ - type: precision_at_5
634
+ value: 15.434000000000001
635
+ - type: recall_at_1
636
+ value: 31.588
637
+ - type: recall_at_10
638
+ value: 64.836
639
+ - type: recall_at_100
640
+ value: 88.066
641
+ - type: recall_at_1000
642
+ value: 97.748
643
+ - type: recall_at_3
644
+ value: 47.128
645
+ - type: recall_at_5
646
+ value: 54.954
647
+ - type: map_at_1
648
+ value: 31.956083333333336
649
+ - type: map_at_10
650
+ value: 43.33483333333333
651
+ - type: map_at_100
652
+ value: 44.64883333333333
653
+ - type: map_at_1000
654
+ value: 44.75
655
+ - type: map_at_3
656
+ value: 39.87741666666666
657
+ - type: map_at_5
658
+ value: 41.86766666666667
659
+ - type: mrr_at_1
660
+ value: 38.06341666666667
661
+ - type: mrr_at_10
662
+ value: 47.839666666666666
663
+ - type: mrr_at_100
664
+ value: 48.644000000000005
665
+ - type: mrr_at_1000
666
+ value: 48.68566666666667
667
+ - type: mrr_at_3
668
+ value: 45.26358333333334
669
+ - type: mrr_at_5
670
+ value: 46.790000000000006
671
+ - type: ndcg_at_1
672
+ value: 38.06341666666667
673
+ - type: ndcg_at_10
674
+ value: 49.419333333333334
675
+ - type: ndcg_at_100
676
+ value: 54.50166666666667
677
+ - type: ndcg_at_1000
678
+ value: 56.161166666666674
679
+ - type: ndcg_at_3
680
+ value: 43.982416666666666
681
+ - type: ndcg_at_5
682
+ value: 46.638083333333334
683
+ - type: precision_at_1
684
+ value: 38.06341666666667
685
+ - type: precision_at_10
686
+ value: 8.70858333333333
687
+ - type: precision_at_100
688
+ value: 1.327
689
+ - type: precision_at_1000
690
+ value: 0.165
691
+ - type: precision_at_3
692
+ value: 20.37816666666667
693
+ - type: precision_at_5
694
+ value: 14.516333333333334
695
+ - type: recall_at_1
696
+ value: 31.956083333333336
697
+ - type: recall_at_10
698
+ value: 62.69458333333334
699
+ - type: recall_at_100
700
+ value: 84.46433333333334
701
+ - type: recall_at_1000
702
+ value: 95.58449999999999
703
+ - type: recall_at_3
704
+ value: 47.52016666666666
705
+ - type: recall_at_5
706
+ value: 54.36066666666666
707
+ - type: map_at_1
708
+ value: 28.912
709
+ - type: map_at_10
710
+ value: 38.291
711
+ - type: map_at_100
712
+ value: 39.44
713
+ - type: map_at_1000
714
+ value: 39.528
715
+ - type: map_at_3
716
+ value: 35.638
717
+ - type: map_at_5
718
+ value: 37.218
719
+ - type: mrr_at_1
720
+ value: 32.822
721
+ - type: mrr_at_10
722
+ value: 41.661
723
+ - type: mrr_at_100
724
+ value: 42.546
725
+ - type: mrr_at_1000
726
+ value: 42.603
727
+ - type: mrr_at_3
728
+ value: 39.238
729
+ - type: mrr_at_5
730
+ value: 40.726
731
+ - type: ndcg_at_1
732
+ value: 32.822
733
+ - type: ndcg_at_10
734
+ value: 43.373
735
+ - type: ndcg_at_100
736
+ value: 48.638
737
+ - type: ndcg_at_1000
738
+ value: 50.654999999999994
739
+ - type: ndcg_at_3
740
+ value: 38.643
741
+ - type: ndcg_at_5
742
+ value: 41.126000000000005
743
+ - type: precision_at_1
744
+ value: 32.822
745
+ - type: precision_at_10
746
+ value: 6.8709999999999996
747
+ - type: precision_at_100
748
+ value: 1.032
749
+ - type: precision_at_1000
750
+ value: 0.128
751
+ - type: precision_at_3
752
+ value: 16.82
753
+ - type: precision_at_5
754
+ value: 11.718
755
+ - type: recall_at_1
756
+ value: 28.912
757
+ - type: recall_at_10
758
+ value: 55.376999999999995
759
+ - type: recall_at_100
760
+ value: 79.066
761
+ - type: recall_at_1000
762
+ value: 93.664
763
+ - type: recall_at_3
764
+ value: 42.569
765
+ - type: recall_at_5
766
+ value: 48.719
767
+ - type: map_at_1
768
+ value: 22.181
769
+ - type: map_at_10
770
+ value: 31.462
771
+ - type: map_at_100
772
+ value: 32.73
773
+ - type: map_at_1000
774
+ value: 32.848
775
+ - type: map_at_3
776
+ value: 28.57
777
+ - type: map_at_5
778
+ value: 30.182
779
+ - type: mrr_at_1
780
+ value: 27.185
781
+ - type: mrr_at_10
782
+ value: 35.846000000000004
783
+ - type: mrr_at_100
784
+ value: 36.811
785
+ - type: mrr_at_1000
786
+ value: 36.873
787
+ - type: mrr_at_3
788
+ value: 33.437
789
+ - type: mrr_at_5
790
+ value: 34.813
791
+ - type: ndcg_at_1
792
+ value: 27.185
793
+ - type: ndcg_at_10
794
+ value: 36.858000000000004
795
+ - type: ndcg_at_100
796
+ value: 42.501
797
+ - type: ndcg_at_1000
798
+ value: 44.945
799
+ - type: ndcg_at_3
800
+ value: 32.066
801
+ - type: ndcg_at_5
802
+ value: 34.29
803
+ - type: precision_at_1
804
+ value: 27.185
805
+ - type: precision_at_10
806
+ value: 6.752
807
+ - type: precision_at_100
808
+ value: 1.111
809
+ - type: precision_at_1000
810
+ value: 0.151
811
+ - type: precision_at_3
812
+ value: 15.290000000000001
813
+ - type: precision_at_5
814
+ value: 11.004999999999999
815
+ - type: recall_at_1
816
+ value: 22.181
817
+ - type: recall_at_10
818
+ value: 48.513
819
+ - type: recall_at_100
820
+ value: 73.418
821
+ - type: recall_at_1000
822
+ value: 90.306
823
+ - type: recall_at_3
824
+ value: 35.003
825
+ - type: recall_at_5
826
+ value: 40.876000000000005
827
+ - type: map_at_1
828
+ value: 33.934999999999995
829
+ - type: map_at_10
830
+ value: 44.727
831
+ - type: map_at_100
832
+ value: 44.727
833
+ - type: map_at_1000
834
+ value: 44.727
835
+ - type: map_at_3
836
+ value: 40.918
837
+ - type: map_at_5
838
+ value: 42.961
839
+ - type: mrr_at_1
840
+ value: 39.646
841
+ - type: mrr_at_10
842
+ value: 48.898
843
+ - type: mrr_at_100
844
+ value: 48.898
845
+ - type: mrr_at_1000
846
+ value: 48.898
847
+ - type: mrr_at_3
848
+ value: 45.896
849
+ - type: mrr_at_5
850
+ value: 47.514
851
+ - type: ndcg_at_1
852
+ value: 39.646
853
+ - type: ndcg_at_10
854
+ value: 50.817
855
+ - type: ndcg_at_100
856
+ value: 50.803
857
+ - type: ndcg_at_1000
858
+ value: 50.803
859
+ - type: ndcg_at_3
860
+ value: 44.507999999999996
861
+ - type: ndcg_at_5
862
+ value: 47.259
863
+ - type: precision_at_1
864
+ value: 39.646
865
+ - type: precision_at_10
866
+ value: 8.759
867
+ - type: precision_at_100
868
+ value: 0.876
869
+ - type: precision_at_1000
870
+ value: 0.08800000000000001
871
+ - type: precision_at_3
872
+ value: 20.274
873
+ - type: precision_at_5
874
+ value: 14.366000000000001
875
+ - type: recall_at_1
876
+ value: 33.934999999999995
877
+ - type: recall_at_10
878
+ value: 65.037
879
+ - type: recall_at_100
880
+ value: 65.037
881
+ - type: recall_at_1000
882
+ value: 65.037
883
+ - type: recall_at_3
884
+ value: 47.439
885
+ - type: recall_at_5
886
+ value: 54.567
887
+ - type: map_at_1
888
+ value: 32.058
889
+ - type: map_at_10
890
+ value: 43.137
891
+ - type: map_at_100
892
+ value: 43.137
893
+ - type: map_at_1000
894
+ value: 43.137
895
+ - type: map_at_3
896
+ value: 39.882
897
+ - type: map_at_5
898
+ value: 41.379
899
+ - type: mrr_at_1
900
+ value: 38.933
901
+ - type: mrr_at_10
902
+ value: 48.344
903
+ - type: mrr_at_100
904
+ value: 48.344
905
+ - type: mrr_at_1000
906
+ value: 48.344
907
+ - type: mrr_at_3
908
+ value: 45.652
909
+ - type: mrr_at_5
910
+ value: 46.877
911
+ - type: ndcg_at_1
912
+ value: 38.933
913
+ - type: ndcg_at_10
914
+ value: 49.964
915
+ - type: ndcg_at_100
916
+ value: 49.242000000000004
917
+ - type: ndcg_at_1000
918
+ value: 49.222
919
+ - type: ndcg_at_3
920
+ value: 44.605
921
+ - type: ndcg_at_5
922
+ value: 46.501999999999995
923
+ - type: precision_at_1
924
+ value: 38.933
925
+ - type: precision_at_10
926
+ value: 9.427000000000001
927
+ - type: precision_at_100
928
+ value: 0.943
929
+ - type: precision_at_1000
930
+ value: 0.094
931
+ - type: precision_at_3
932
+ value: 20.685000000000002
933
+ - type: precision_at_5
934
+ value: 14.585
935
+ - type: recall_at_1
936
+ value: 32.058
937
+ - type: recall_at_10
938
+ value: 63.074
939
+ - type: recall_at_100
940
+ value: 63.074
941
+ - type: recall_at_1000
942
+ value: 63.074
943
+ - type: recall_at_3
944
+ value: 47.509
945
+ - type: recall_at_5
946
+ value: 52.455
947
+ - type: map_at_1
948
+ value: 26.029000000000003
949
+ - type: map_at_10
950
+ value: 34.646
951
+ - type: map_at_100
952
+ value: 34.646
953
+ - type: map_at_1000
954
+ value: 34.646
955
+ - type: map_at_3
956
+ value: 31.456
957
+ - type: map_at_5
958
+ value: 33.138
959
+ - type: mrr_at_1
960
+ value: 28.281
961
+ - type: mrr_at_10
962
+ value: 36.905
963
+ - type: mrr_at_100
964
+ value: 36.905
965
+ - type: mrr_at_1000
966
+ value: 36.905
967
+ - type: mrr_at_3
968
+ value: 34.011
969
+ - type: mrr_at_5
970
+ value: 35.638
971
+ - type: ndcg_at_1
972
+ value: 28.281
973
+ - type: ndcg_at_10
974
+ value: 40.159
975
+ - type: ndcg_at_100
976
+ value: 40.159
977
+ - type: ndcg_at_1000
978
+ value: 40.159
979
+ - type: ndcg_at_3
980
+ value: 33.995
981
+ - type: ndcg_at_5
982
+ value: 36.836999999999996
983
+ - type: precision_at_1
984
+ value: 28.281
985
+ - type: precision_at_10
986
+ value: 6.358999999999999
987
+ - type: precision_at_100
988
+ value: 0.636
989
+ - type: precision_at_1000
990
+ value: 0.064
991
+ - type: precision_at_3
992
+ value: 14.233
993
+ - type: precision_at_5
994
+ value: 10.314
995
+ - type: recall_at_1
996
+ value: 26.029000000000003
997
+ - type: recall_at_10
998
+ value: 55.08
999
+ - type: recall_at_100
1000
+ value: 55.08
1001
+ - type: recall_at_1000
1002
+ value: 55.08
1003
+ - type: recall_at_3
1004
+ value: 38.487
1005
+ - type: recall_at_5
1006
+ value: 45.308
1007
+ - task:
1008
+ type: Retrieval
1009
+ dataset:
1010
+ name: MTEB ClimateFEVER
1011
+ type: climate-fever
1012
+ config: default
1013
+ split: test
1014
+ revision: None
1015
+ metrics:
1016
+ - type: map_at_1
1017
+ value: 12.842999999999998
1018
+ - type: map_at_10
1019
+ value: 22.101000000000003
1020
+ - type: map_at_100
1021
+ value: 24.319
1022
+ - type: map_at_1000
1023
+ value: 24.51
1024
+ - type: map_at_3
1025
+ value: 18.372
1026
+ - type: map_at_5
1027
+ value: 20.323
1028
+ - type: mrr_at_1
1029
+ value: 27.948
1030
+ - type: mrr_at_10
1031
+ value: 40.321
1032
+ - type: mrr_at_100
1033
+ value: 41.262
1034
+ - type: mrr_at_1000
1035
+ value: 41.297
1036
+ - type: mrr_at_3
1037
+ value: 36.558
1038
+ - type: mrr_at_5
1039
+ value: 38.824999999999996
1040
+ - type: ndcg_at_1
1041
+ value: 27.948
1042
+ - type: ndcg_at_10
1043
+ value: 30.906
1044
+ - type: ndcg_at_100
1045
+ value: 38.986
1046
+ - type: ndcg_at_1000
1047
+ value: 42.136
1048
+ - type: ndcg_at_3
1049
+ value: 24.911
1050
+ - type: ndcg_at_5
1051
+ value: 27.168999999999997
1052
+ - type: precision_at_1
1053
+ value: 27.948
1054
+ - type: precision_at_10
1055
+ value: 9.798
1056
+ - type: precision_at_100
1057
+ value: 1.8399999999999999
1058
+ - type: precision_at_1000
1059
+ value: 0.243
1060
+ - type: precision_at_3
1061
+ value: 18.328
1062
+ - type: precision_at_5
1063
+ value: 14.502
1064
+ - type: recall_at_1
1065
+ value: 12.842999999999998
1066
+ - type: recall_at_10
1067
+ value: 37.245
1068
+ - type: recall_at_100
1069
+ value: 64.769
1070
+ - type: recall_at_1000
1071
+ value: 82.055
1072
+ - type: recall_at_3
1073
+ value: 23.159
1074
+ - type: recall_at_5
1075
+ value: 29.113
1076
+ - task:
1077
+ type: Retrieval
1078
+ dataset:
1079
+ name: MTEB DBPedia
1080
+ type: dbpedia-entity
1081
+ config: default
1082
+ split: test
1083
+ revision: None
1084
+ metrics:
1085
+ - type: map_at_1
1086
+ value: 8.934000000000001
1087
+ - type: map_at_10
1088
+ value: 21.915000000000003
1089
+ - type: map_at_100
1090
+ value: 21.915000000000003
1091
+ - type: map_at_1000
1092
+ value: 21.915000000000003
1093
+ - type: map_at_3
1094
+ value: 14.623
1095
+ - type: map_at_5
1096
+ value: 17.841
1097
+ - type: mrr_at_1
1098
+ value: 71.25
1099
+ - type: mrr_at_10
1100
+ value: 78.994
1101
+ - type: mrr_at_100
1102
+ value: 78.994
1103
+ - type: mrr_at_1000
1104
+ value: 78.994
1105
+ - type: mrr_at_3
1106
+ value: 77.208
1107
+ - type: mrr_at_5
1108
+ value: 78.55799999999999
1109
+ - type: ndcg_at_1
1110
+ value: 60.62499999999999
1111
+ - type: ndcg_at_10
1112
+ value: 46.604
1113
+ - type: ndcg_at_100
1114
+ value: 35.653
1115
+ - type: ndcg_at_1000
1116
+ value: 35.531
1117
+ - type: ndcg_at_3
1118
+ value: 50.605
1119
+ - type: ndcg_at_5
1120
+ value: 48.730000000000004
1121
+ - type: precision_at_1
1122
+ value: 71.25
1123
+ - type: precision_at_10
1124
+ value: 37.75
1125
+ - type: precision_at_100
1126
+ value: 3.775
1127
+ - type: precision_at_1000
1128
+ value: 0.377
1129
+ - type: precision_at_3
1130
+ value: 54.417
1131
+ - type: precision_at_5
1132
+ value: 48.15
1133
+ - type: recall_at_1
1134
+ value: 8.934000000000001
1135
+ - type: recall_at_10
1136
+ value: 28.471000000000004
1137
+ - type: recall_at_100
1138
+ value: 28.471000000000004
1139
+ - type: recall_at_1000
1140
+ value: 28.471000000000004
1141
+ - type: recall_at_3
1142
+ value: 16.019
1143
+ - type: recall_at_5
1144
+ value: 21.410999999999998
1145
+ - task:
1146
+ type: Classification
1147
+ dataset:
1148
+ name: MTEB EmotionClassification
1149
+ type: mteb/emotion
1150
+ config: default
1151
+ split: test
1152
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1153
+ metrics:
1154
+ - type: accuracy
1155
+ value: 52.81
1156
+ - type: f1
1157
+ value: 47.987573380720114
1158
+ - task:
1159
+ type: Retrieval
1160
+ dataset:
1161
+ name: MTEB FEVER
1162
+ type: fever
1163
+ config: default
1164
+ split: test
1165
+ revision: None
1166
+ metrics:
1167
+ - type: map_at_1
1168
+ value: 66.81899999999999
1169
+ - type: map_at_10
1170
+ value: 78.034
1171
+ - type: map_at_100
1172
+ value: 78.034
1173
+ - type: map_at_1000
1174
+ value: 78.034
1175
+ - type: map_at_3
1176
+ value: 76.43100000000001
1177
+ - type: map_at_5
1178
+ value: 77.515
1179
+ - type: mrr_at_1
1180
+ value: 71.542
1181
+ - type: mrr_at_10
1182
+ value: 81.638
1183
+ - type: mrr_at_100
1184
+ value: 81.638
1185
+ - type: mrr_at_1000
1186
+ value: 81.638
1187
+ - type: mrr_at_3
1188
+ value: 80.403
1189
+ - type: mrr_at_5
1190
+ value: 81.256
1191
+ - type: ndcg_at_1
1192
+ value: 71.542
1193
+ - type: ndcg_at_10
1194
+ value: 82.742
1195
+ - type: ndcg_at_100
1196
+ value: 82.741
1197
+ - type: ndcg_at_1000
1198
+ value: 82.741
1199
+ - type: ndcg_at_3
1200
+ value: 80.039
1201
+ - type: ndcg_at_5
1202
+ value: 81.695
1203
+ - type: precision_at_1
1204
+ value: 71.542
1205
+ - type: precision_at_10
1206
+ value: 10.387
1207
+ - type: precision_at_100
1208
+ value: 1.039
1209
+ - type: precision_at_1000
1210
+ value: 0.104
1211
+ - type: precision_at_3
1212
+ value: 31.447999999999997
1213
+ - type: precision_at_5
1214
+ value: 19.91
1215
+ - type: recall_at_1
1216
+ value: 66.81899999999999
1217
+ - type: recall_at_10
1218
+ value: 93.372
1219
+ - type: recall_at_100
1220
+ value: 93.372
1221
+ - type: recall_at_1000
1222
+ value: 93.372
1223
+ - type: recall_at_3
1224
+ value: 86.33
1225
+ - type: recall_at_5
1226
+ value: 90.347
1227
+ - task:
1228
+ type: Retrieval
1229
+ dataset:
1230
+ name: MTEB FiQA2018
1231
+ type: fiqa
1232
+ config: default
1233
+ split: test
1234
+ revision: None
1235
+ metrics:
1236
+ - type: map_at_1
1237
+ value: 31.158
1238
+ - type: map_at_10
1239
+ value: 52.017
1240
+ - type: map_at_100
1241
+ value: 54.259
1242
+ - type: map_at_1000
1243
+ value: 54.367
1244
+ - type: map_at_3
1245
+ value: 45.738
1246
+ - type: map_at_5
1247
+ value: 49.283
1248
+ - type: mrr_at_1
1249
+ value: 57.87
1250
+ - type: mrr_at_10
1251
+ value: 66.215
1252
+ - type: mrr_at_100
1253
+ value: 66.735
1254
+ - type: mrr_at_1000
1255
+ value: 66.75
1256
+ - type: mrr_at_3
1257
+ value: 64.043
1258
+ - type: mrr_at_5
1259
+ value: 65.116
1260
+ - type: ndcg_at_1
1261
+ value: 57.87
1262
+ - type: ndcg_at_10
1263
+ value: 59.946999999999996
1264
+ - type: ndcg_at_100
1265
+ value: 66.31099999999999
1266
+ - type: ndcg_at_1000
1267
+ value: 67.75999999999999
1268
+ - type: ndcg_at_3
1269
+ value: 55.483000000000004
1270
+ - type: ndcg_at_5
1271
+ value: 56.891000000000005
1272
+ - type: precision_at_1
1273
+ value: 57.87
1274
+ - type: precision_at_10
1275
+ value: 16.497
1276
+ - type: precision_at_100
1277
+ value: 2.321
1278
+ - type: precision_at_1000
1279
+ value: 0.258
1280
+ - type: precision_at_3
1281
+ value: 37.14
1282
+ - type: precision_at_5
1283
+ value: 27.067999999999998
1284
+ - type: recall_at_1
1285
+ value: 31.158
1286
+ - type: recall_at_10
1287
+ value: 67.381
1288
+ - type: recall_at_100
1289
+ value: 89.464
1290
+ - type: recall_at_1000
1291
+ value: 97.989
1292
+ - type: recall_at_3
1293
+ value: 50.553000000000004
1294
+ - type: recall_at_5
1295
+ value: 57.824
1296
+ - task:
1297
+ type: Retrieval
1298
+ dataset:
1299
+ name: MTEB HotpotQA
1300
+ type: hotpotqa
1301
+ config: default
1302
+ split: test
1303
+ revision: None
1304
+ metrics:
1305
+ - type: map_at_1
1306
+ value: 42.073
1307
+ - type: map_at_10
1308
+ value: 72.418
1309
+ - type: map_at_100
1310
+ value: 73.175
1311
+ - type: map_at_1000
1312
+ value: 73.215
1313
+ - type: map_at_3
1314
+ value: 68.791
1315
+ - type: map_at_5
1316
+ value: 71.19
1317
+ - type: mrr_at_1
1318
+ value: 84.146
1319
+ - type: mrr_at_10
1320
+ value: 88.994
1321
+ - type: mrr_at_100
1322
+ value: 89.116
1323
+ - type: mrr_at_1000
1324
+ value: 89.12
1325
+ - type: mrr_at_3
1326
+ value: 88.373
1327
+ - type: mrr_at_5
1328
+ value: 88.82
1329
+ - type: ndcg_at_1
1330
+ value: 84.146
1331
+ - type: ndcg_at_10
1332
+ value: 79.404
1333
+ - type: ndcg_at_100
1334
+ value: 81.83200000000001
1335
+ - type: ndcg_at_1000
1336
+ value: 82.524
1337
+ - type: ndcg_at_3
1338
+ value: 74.595
1339
+ - type: ndcg_at_5
1340
+ value: 77.474
1341
+ - type: precision_at_1
1342
+ value: 84.146
1343
+ - type: precision_at_10
1344
+ value: 16.753999999999998
1345
+ - type: precision_at_100
1346
+ value: 1.8599999999999999
1347
+ - type: precision_at_1000
1348
+ value: 0.19499999999999998
1349
+ - type: precision_at_3
1350
+ value: 48.854
1351
+ - type: precision_at_5
1352
+ value: 31.579
1353
+ - type: recall_at_1
1354
+ value: 42.073
1355
+ - type: recall_at_10
1356
+ value: 83.768
1357
+ - type: recall_at_100
1358
+ value: 93.018
1359
+ - type: recall_at_1000
1360
+ value: 97.481
1361
+ - type: recall_at_3
1362
+ value: 73.282
1363
+ - type: recall_at_5
1364
+ value: 78.947
1365
+ - task:
1366
+ type: Classification
1367
+ dataset:
1368
+ name: MTEB ImdbClassification
1369
+ type: mteb/imdb
1370
+ config: default
1371
+ split: test
1372
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1373
+ metrics:
1374
+ - type: accuracy
1375
+ value: 94.9968
1376
+ - type: ap
1377
+ value: 92.93892195862824
1378
+ - type: f1
1379
+ value: 94.99327998213761
1380
+ - task:
1381
+ type: Retrieval
1382
+ dataset:
1383
+ name: MTEB MSMARCO
1384
+ type: msmarco
1385
+ config: default
1386
+ split: dev
1387
+ revision: None
1388
+ metrics:
1389
+ - type: map_at_1
1390
+ value: 21.698
1391
+ - type: map_at_10
1392
+ value: 34.585
1393
+ - type: map_at_100
1394
+ value: 35.782000000000004
1395
+ - type: map_at_1000
1396
+ value: 35.825
1397
+ - type: map_at_3
1398
+ value: 30.397999999999996
1399
+ - type: map_at_5
1400
+ value: 32.72
1401
+ - type: mrr_at_1
1402
+ value: 22.192
1403
+ - type: mrr_at_10
1404
+ value: 35.085
1405
+ - type: mrr_at_100
1406
+ value: 36.218
1407
+ - type: mrr_at_1000
1408
+ value: 36.256
1409
+ - type: mrr_at_3
1410
+ value: 30.986000000000004
1411
+ - type: mrr_at_5
1412
+ value: 33.268
1413
+ - type: ndcg_at_1
1414
+ value: 22.192
1415
+ - type: ndcg_at_10
1416
+ value: 41.957
1417
+ - type: ndcg_at_100
1418
+ value: 47.658
1419
+ - type: ndcg_at_1000
1420
+ value: 48.697
1421
+ - type: ndcg_at_3
1422
+ value: 33.433
1423
+ - type: ndcg_at_5
1424
+ value: 37.551
1425
+ - type: precision_at_1
1426
+ value: 22.192
1427
+ - type: precision_at_10
1428
+ value: 6.781
1429
+ - type: precision_at_100
1430
+ value: 0.963
1431
+ - type: precision_at_1000
1432
+ value: 0.105
1433
+ - type: precision_at_3
1434
+ value: 14.365
1435
+ - type: precision_at_5
1436
+ value: 10.713000000000001
1437
+ - type: recall_at_1
1438
+ value: 21.698
1439
+ - type: recall_at_10
1440
+ value: 64.79
1441
+ - type: recall_at_100
1442
+ value: 91.071
1443
+ - type: recall_at_1000
1444
+ value: 98.883
1445
+ - type: recall_at_3
1446
+ value: 41.611
1447
+ - type: recall_at_5
1448
+ value: 51.459999999999994
1449
+ - task:
1450
+ type: Classification
1451
+ dataset:
1452
+ name: MTEB MTOPDomainClassification (en)
1453
+ type: mteb/mtop_domain
1454
+ config: en
1455
+ split: test
1456
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1457
+ metrics:
1458
+ - type: accuracy
1459
+ value: 96.15823073415413
1460
+ - type: f1
1461
+ value: 96.00362034963248
1462
+ - task:
1463
+ type: Classification
1464
+ dataset:
1465
+ name: MTEB MTOPIntentClassification (en)
1466
+ type: mteb/mtop_intent
1467
+ config: en
1468
+ split: test
1469
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1470
+ metrics:
1471
+ - type: accuracy
1472
+ value: 87.12722298221614
1473
+ - type: f1
1474
+ value: 70.46888967516227
1475
+ - task:
1476
+ type: Classification
1477
+ dataset:
1478
+ name: MTEB MassiveIntentClassification (en)
1479
+ type: mteb/amazon_massive_intent
1480
+ config: en
1481
+ split: test
1482
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1483
+ metrics:
1484
+ - type: accuracy
1485
+ value: 80.77673167451245
1486
+ - type: f1
1487
+ value: 77.60202561132175
1488
+ - task:
1489
+ type: Classification
1490
+ dataset:
1491
+ name: MTEB MassiveScenarioClassification (en)
1492
+ type: mteb/amazon_massive_scenario
1493
+ config: en
1494
+ split: test
1495
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1496
+ metrics:
1497
+ - type: accuracy
1498
+ value: 82.09145931405514
1499
+ - type: f1
1500
+ value: 81.7701921473406
1501
+ - task:
1502
+ type: Clustering
1503
+ dataset:
1504
+ name: MTEB MedrxivClusteringP2P
1505
+ type: mteb/medrxiv-clustering-p2p
1506
+ config: default
1507
+ split: test
1508
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1509
+ metrics:
1510
+ - type: v_measure
1511
+ value: 36.52153488185864
1512
+ - task:
1513
+ type: Clustering
1514
+ dataset:
1515
+ name: MTEB MedrxivClusteringS2S
1516
+ type: mteb/medrxiv-clustering-s2s
1517
+ config: default
1518
+ split: test
1519
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1520
+ metrics:
1521
+ - type: v_measure
1522
+ value: 36.80090398444147
1523
+ - task:
1524
+ type: Reranking
1525
+ dataset:
1526
+ name: MTEB MindSmallReranking
1527
+ type: mteb/mind_small
1528
+ config: default
1529
+ split: test
1530
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1531
+ metrics:
1532
+ - type: map
1533
+ value: 31.807141746058605
1534
+ - type: mrr
1535
+ value: 32.85025611455029
1536
+ - task:
1537
+ type: Retrieval
1538
+ dataset:
1539
+ name: MTEB NFCorpus
1540
+ type: nfcorpus
1541
+ config: default
1542
+ split: test
1543
+ revision: None
1544
+ metrics:
1545
+ - type: map_at_1
1546
+ value: 6.920999999999999
1547
+ - type: map_at_10
1548
+ value: 16.049
1549
+ - type: map_at_100
1550
+ value: 16.049
1551
+ - type: map_at_1000
1552
+ value: 16.049
1553
+ - type: map_at_3
1554
+ value: 11.865
1555
+ - type: map_at_5
1556
+ value: 13.657
1557
+ - type: mrr_at_1
1558
+ value: 53.87
1559
+ - type: mrr_at_10
1560
+ value: 62.291
1561
+ - type: mrr_at_100
1562
+ value: 62.291
1563
+ - type: mrr_at_1000
1564
+ value: 62.291
1565
+ - type: mrr_at_3
1566
+ value: 60.681
1567
+ - type: mrr_at_5
1568
+ value: 61.61
1569
+ - type: ndcg_at_1
1570
+ value: 51.23799999999999
1571
+ - type: ndcg_at_10
1572
+ value: 40.892
1573
+ - type: ndcg_at_100
1574
+ value: 26.951999999999998
1575
+ - type: ndcg_at_1000
1576
+ value: 26.474999999999998
1577
+ - type: ndcg_at_3
1578
+ value: 46.821
1579
+ - type: ndcg_at_5
1580
+ value: 44.333
1581
+ - type: precision_at_1
1582
+ value: 53.251000000000005
1583
+ - type: precision_at_10
1584
+ value: 30.124000000000002
1585
+ - type: precision_at_100
1586
+ value: 3.012
1587
+ - type: precision_at_1000
1588
+ value: 0.301
1589
+ - type: precision_at_3
1590
+ value: 43.55
1591
+ - type: precision_at_5
1592
+ value: 38.266
1593
+ - type: recall_at_1
1594
+ value: 6.920999999999999
1595
+ - type: recall_at_10
1596
+ value: 20.852
1597
+ - type: recall_at_100
1598
+ value: 20.852
1599
+ - type: recall_at_1000
1600
+ value: 20.852
1601
+ - type: recall_at_3
1602
+ value: 13.628000000000002
1603
+ - type: recall_at_5
1604
+ value: 16.273
1605
+ - task:
1606
+ type: Retrieval
1607
+ dataset:
1608
+ name: MTEB NQ
1609
+ type: nq
1610
+ config: default
1611
+ split: test
1612
+ revision: None
1613
+ metrics:
1614
+ - type: map_at_1
1615
+ value: 46.827999999999996
1616
+ - type: map_at_10
1617
+ value: 63.434000000000005
1618
+ - type: map_at_100
1619
+ value: 63.434000000000005
1620
+ - type: map_at_1000
1621
+ value: 63.434000000000005
1622
+ - type: map_at_3
1623
+ value: 59.794000000000004
1624
+ - type: map_at_5
1625
+ value: 62.08
1626
+ - type: mrr_at_1
1627
+ value: 52.288999999999994
1628
+ - type: mrr_at_10
1629
+ value: 65.95
1630
+ - type: mrr_at_100
1631
+ value: 65.95
1632
+ - type: mrr_at_1000
1633
+ value: 65.95
1634
+ - type: mrr_at_3
1635
+ value: 63.413
1636
+ - type: mrr_at_5
1637
+ value: 65.08
1638
+ - type: ndcg_at_1
1639
+ value: 52.288999999999994
1640
+ - type: ndcg_at_10
1641
+ value: 70.301
1642
+ - type: ndcg_at_100
1643
+ value: 70.301
1644
+ - type: ndcg_at_1000
1645
+ value: 70.301
1646
+ - type: ndcg_at_3
1647
+ value: 63.979
1648
+ - type: ndcg_at_5
1649
+ value: 67.582
1650
+ - type: precision_at_1
1651
+ value: 52.288999999999994
1652
+ - type: precision_at_10
1653
+ value: 10.576
1654
+ - type: precision_at_100
1655
+ value: 1.058
1656
+ - type: precision_at_1000
1657
+ value: 0.106
1658
+ - type: precision_at_3
1659
+ value: 28.177000000000003
1660
+ - type: precision_at_5
1661
+ value: 19.073
1662
+ - type: recall_at_1
1663
+ value: 46.827999999999996
1664
+ - type: recall_at_10
1665
+ value: 88.236
1666
+ - type: recall_at_100
1667
+ value: 88.236
1668
+ - type: recall_at_1000
1669
+ value: 88.236
1670
+ - type: recall_at_3
1671
+ value: 72.371
1672
+ - type: recall_at_5
1673
+ value: 80.56
1674
+ - task:
1675
+ type: Retrieval
1676
+ dataset:
1677
+ name: MTEB QuoraRetrieval
1678
+ type: quora
1679
+ config: default
1680
+ split: test
1681
+ revision: None
1682
+ metrics:
1683
+ - type: map_at_1
1684
+ value: 71.652
1685
+ - type: map_at_10
1686
+ value: 85.953
1687
+ - type: map_at_100
1688
+ value: 85.953
1689
+ - type: map_at_1000
1690
+ value: 85.953
1691
+ - type: map_at_3
1692
+ value: 83.05399999999999
1693
+ - type: map_at_5
1694
+ value: 84.89
1695
+ - type: mrr_at_1
1696
+ value: 82.42
1697
+ - type: mrr_at_10
1698
+ value: 88.473
1699
+ - type: mrr_at_100
1700
+ value: 88.473
1701
+ - type: mrr_at_1000
1702
+ value: 88.473
1703
+ - type: mrr_at_3
1704
+ value: 87.592
1705
+ - type: mrr_at_5
1706
+ value: 88.211
1707
+ - type: ndcg_at_1
1708
+ value: 82.44
1709
+ - type: ndcg_at_10
1710
+ value: 89.467
1711
+ - type: ndcg_at_100
1712
+ value: 89.33
1713
+ - type: ndcg_at_1000
1714
+ value: 89.33
1715
+ - type: ndcg_at_3
1716
+ value: 86.822
1717
+ - type: ndcg_at_5
1718
+ value: 88.307
1719
+ - type: precision_at_1
1720
+ value: 82.44
1721
+ - type: precision_at_10
1722
+ value: 13.616
1723
+ - type: precision_at_100
1724
+ value: 1.362
1725
+ - type: precision_at_1000
1726
+ value: 0.136
1727
+ - type: precision_at_3
1728
+ value: 38.117000000000004
1729
+ - type: precision_at_5
1730
+ value: 25.05
1731
+ - type: recall_at_1
1732
+ value: 71.652
1733
+ - type: recall_at_10
1734
+ value: 96.224
1735
+ - type: recall_at_100
1736
+ value: 96.224
1737
+ - type: recall_at_1000
1738
+ value: 96.224
1739
+ - type: recall_at_3
1740
+ value: 88.571
1741
+ - type: recall_at_5
1742
+ value: 92.812
1743
+ - task:
1744
+ type: Clustering
1745
+ dataset:
1746
+ name: MTEB RedditClustering
1747
+ type: mteb/reddit-clustering
1748
+ config: default
1749
+ split: test
1750
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1751
+ metrics:
1752
+ - type: v_measure
1753
+ value: 61.295010338050474
1754
+ - task:
1755
+ type: Clustering
1756
+ dataset:
1757
+ name: MTEB RedditClusteringP2P
1758
+ type: mteb/reddit-clustering-p2p
1759
+ config: default
1760
+ split: test
1761
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1762
+ metrics:
1763
+ - type: v_measure
1764
+ value: 67.26380819328142
1765
+ - task:
1766
+ type: Retrieval
1767
+ dataset:
1768
+ name: MTEB SCIDOCS
1769
+ type: scidocs
1770
+ config: default
1771
+ split: test
1772
+ revision: None
1773
+ metrics:
1774
+ - type: map_at_1
1775
+ value: 5.683
1776
+ - type: map_at_10
1777
+ value: 14.924999999999999
1778
+ - type: map_at_100
1779
+ value: 17.532
1780
+ - type: map_at_1000
1781
+ value: 17.875
1782
+ - type: map_at_3
1783
+ value: 10.392
1784
+ - type: map_at_5
1785
+ value: 12.592
1786
+ - type: mrr_at_1
1787
+ value: 28.000000000000004
1788
+ - type: mrr_at_10
1789
+ value: 39.951
1790
+ - type: mrr_at_100
1791
+ value: 41.025
1792
+ - type: mrr_at_1000
1793
+ value: 41.056
1794
+ - type: mrr_at_3
1795
+ value: 36.317
1796
+ - type: mrr_at_5
1797
+ value: 38.412
1798
+ - type: ndcg_at_1
1799
+ value: 28.000000000000004
1800
+ - type: ndcg_at_10
1801
+ value: 24.410999999999998
1802
+ - type: ndcg_at_100
1803
+ value: 33.79
1804
+ - type: ndcg_at_1000
1805
+ value: 39.035
1806
+ - type: ndcg_at_3
1807
+ value: 22.845
1808
+ - type: ndcg_at_5
1809
+ value: 20.080000000000002
1810
+ - type: precision_at_1
1811
+ value: 28.000000000000004
1812
+ - type: precision_at_10
1813
+ value: 12.790000000000001
1814
+ - type: precision_at_100
1815
+ value: 2.633
1816
+ - type: precision_at_1000
1817
+ value: 0.388
1818
+ - type: precision_at_3
1819
+ value: 21.367
1820
+ - type: precision_at_5
1821
+ value: 17.7
1822
+ - type: recall_at_1
1823
+ value: 5.683
1824
+ - type: recall_at_10
1825
+ value: 25.91
1826
+ - type: recall_at_100
1827
+ value: 53.443
1828
+ - type: recall_at_1000
1829
+ value: 78.73
1830
+ - type: recall_at_3
1831
+ value: 13.003
1832
+ - type: recall_at_5
1833
+ value: 17.932000000000002
1834
+ - task:
1835
+ type: STS
1836
+ dataset:
1837
+ name: MTEB SICK-R
1838
+ type: mteb/sickr-sts
1839
+ config: default
1840
+ split: test
1841
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1842
+ metrics:
1843
+ - type: cos_sim_pearson
1844
+ value: 84.677978681023
1845
+ - type: cos_sim_spearman
1846
+ value: 83.13093441058189
1847
+ - type: euclidean_pearson
1848
+ value: 83.35535759341572
1849
+ - type: euclidean_spearman
1850
+ value: 83.42583744219611
1851
+ - type: manhattan_pearson
1852
+ value: 83.2243124045889
1853
+ - type: manhattan_spearman
1854
+ value: 83.39801618652632
1855
+ - task:
1856
+ type: STS
1857
+ dataset:
1858
+ name: MTEB STS12
1859
+ type: mteb/sts12-sts
1860
+ config: default
1861
+ split: test
1862
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1863
+ metrics:
1864
+ - type: cos_sim_pearson
1865
+ value: 81.68960206569666
1866
+ - type: cos_sim_spearman
1867
+ value: 77.3368966488535
1868
+ - type: euclidean_pearson
1869
+ value: 77.62828980560303
1870
+ - type: euclidean_spearman
1871
+ value: 76.77951481444651
1872
+ - type: manhattan_pearson
1873
+ value: 77.88637240839041
1874
+ - type: manhattan_spearman
1875
+ value: 77.22157841466188
1876
+ - task:
1877
+ type: STS
1878
+ dataset:
1879
+ name: MTEB STS13
1880
+ type: mteb/sts13-sts
1881
+ config: default
1882
+ split: test
1883
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1884
+ metrics:
1885
+ - type: cos_sim_pearson
1886
+ value: 84.18745821650724
1887
+ - type: cos_sim_spearman
1888
+ value: 85.04423285574542
1889
+ - type: euclidean_pearson
1890
+ value: 85.46604816931023
1891
+ - type: euclidean_spearman
1892
+ value: 85.5230593932974
1893
+ - type: manhattan_pearson
1894
+ value: 85.57912805986261
1895
+ - type: manhattan_spearman
1896
+ value: 85.65955905111873
1897
+ - task:
1898
+ type: STS
1899
+ dataset:
1900
+ name: MTEB STS14
1901
+ type: mteb/sts14-sts
1902
+ config: default
1903
+ split: test
1904
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1905
+ metrics:
1906
+ - type: cos_sim_pearson
1907
+ value: 83.6715333300355
1908
+ - type: cos_sim_spearman
1909
+ value: 82.9058522514908
1910
+ - type: euclidean_pearson
1911
+ value: 83.9640357424214
1912
+ - type: euclidean_spearman
1913
+ value: 83.60415457472637
1914
+ - type: manhattan_pearson
1915
+ value: 84.05621005853469
1916
+ - type: manhattan_spearman
1917
+ value: 83.87077724707746
1918
+ - task:
1919
+ type: STS
1920
+ dataset:
1921
+ name: MTEB STS15
1922
+ type: mteb/sts15-sts
1923
+ config: default
1924
+ split: test
1925
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1926
+ metrics:
1927
+ - type: cos_sim_pearson
1928
+ value: 87.82422928098886
1929
+ - type: cos_sim_spearman
1930
+ value: 88.12660311894628
1931
+ - type: euclidean_pearson
1932
+ value: 87.50974805056555
1933
+ - type: euclidean_spearman
1934
+ value: 87.91957275596677
1935
+ - type: manhattan_pearson
1936
+ value: 87.74119404878883
1937
+ - type: manhattan_spearman
1938
+ value: 88.2808922165719
1939
+ - task:
1940
+ type: STS
1941
+ dataset:
1942
+ name: MTEB STS16
1943
+ type: mteb/sts16-sts
1944
+ config: default
1945
+ split: test
1946
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1947
+ metrics:
1948
+ - type: cos_sim_pearson
1949
+ value: 84.80605838552093
1950
+ - type: cos_sim_spearman
1951
+ value: 86.24123388765678
1952
+ - type: euclidean_pearson
1953
+ value: 85.32648347339814
1954
+ - type: euclidean_spearman
1955
+ value: 85.60046671950158
1956
+ - type: manhattan_pearson
1957
+ value: 85.53800168487811
1958
+ - type: manhattan_spearman
1959
+ value: 85.89542420480763
1960
+ - task:
1961
+ type: STS
1962
+ dataset:
1963
+ name: MTEB STS17 (en-en)
1964
+ type: mteb/sts17-crosslingual-sts
1965
+ config: en-en
1966
+ split: test
1967
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1968
+ metrics:
1969
+ - type: cos_sim_pearson
1970
+ value: 89.87540978988132
1971
+ - type: cos_sim_spearman
1972
+ value: 90.12715295099461
1973
+ - type: euclidean_pearson
1974
+ value: 91.61085993525275
1975
+ - type: euclidean_spearman
1976
+ value: 91.31835942311758
1977
+ - type: manhattan_pearson
1978
+ value: 91.57500202032934
1979
+ - type: manhattan_spearman
1980
+ value: 91.1790925526635
1981
+ - task:
1982
+ type: STS
1983
+ dataset:
1984
+ name: MTEB STS22 (en)
1985
+ type: mteb/sts22-crosslingual-sts
1986
+ config: en
1987
+ split: test
1988
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
1989
+ metrics:
1990
+ - type: cos_sim_pearson
1991
+ value: 69.87136205329556
1992
+ - type: cos_sim_spearman
1993
+ value: 68.6253154635078
1994
+ - type: euclidean_pearson
1995
+ value: 68.91536015034222
1996
+ - type: euclidean_spearman
1997
+ value: 67.63744649352542
1998
+ - type: manhattan_pearson
1999
+ value: 69.2000713045275
2000
+ - type: manhattan_spearman
2001
+ value: 68.16002901587316
2002
+ - task:
2003
+ type: STS
2004
+ dataset:
2005
+ name: MTEB STSBenchmark
2006
+ type: mteb/stsbenchmark-sts
2007
+ config: default
2008
+ split: test
2009
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2010
+ metrics:
2011
+ - type: cos_sim_pearson
2012
+ value: 85.21849551039082
2013
+ - type: cos_sim_spearman
2014
+ value: 85.6392959372461
2015
+ - type: euclidean_pearson
2016
+ value: 85.92050852609488
2017
+ - type: euclidean_spearman
2018
+ value: 85.97205649009734
2019
+ - type: manhattan_pearson
2020
+ value: 86.1031154802254
2021
+ - type: manhattan_spearman
2022
+ value: 86.26791155517466
2023
+ - task:
2024
+ type: Reranking
2025
+ dataset:
2026
+ name: MTEB SciDocsRR
2027
+ type: mteb/scidocs-reranking
2028
+ config: default
2029
+ split: test
2030
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2031
+ metrics:
2032
+ - type: map
2033
+ value: 86.83953958636627
2034
+ - type: mrr
2035
+ value: 96.71167612344082
2036
+ - task:
2037
+ type: Retrieval
2038
+ dataset:
2039
+ name: MTEB SciFact
2040
+ type: scifact
2041
+ config: default
2042
+ split: test
2043
+ revision: None
2044
+ metrics:
2045
+ - type: map_at_1
2046
+ value: 64.994
2047
+ - type: map_at_10
2048
+ value: 74.763
2049
+ - type: map_at_100
2050
+ value: 75.127
2051
+ - type: map_at_1000
2052
+ value: 75.143
2053
+ - type: map_at_3
2054
+ value: 71.824
2055
+ - type: map_at_5
2056
+ value: 73.71
2057
+ - type: mrr_at_1
2058
+ value: 68.333
2059
+ - type: mrr_at_10
2060
+ value: 75.749
2061
+ - type: mrr_at_100
2062
+ value: 75.922
2063
+ - type: mrr_at_1000
2064
+ value: 75.938
2065
+ - type: mrr_at_3
2066
+ value: 73.556
2067
+ - type: mrr_at_5
2068
+ value: 74.739
2069
+ - type: ndcg_at_1
2070
+ value: 68.333
2071
+ - type: ndcg_at_10
2072
+ value: 79.174
2073
+ - type: ndcg_at_100
2074
+ value: 80.41
2075
+ - type: ndcg_at_1000
2076
+ value: 80.804
2077
+ - type: ndcg_at_3
2078
+ value: 74.361
2079
+ - type: ndcg_at_5
2080
+ value: 76.861
2081
+ - type: precision_at_1
2082
+ value: 68.333
2083
+ - type: precision_at_10
2084
+ value: 10.333
2085
+ - type: precision_at_100
2086
+ value: 1.0999999999999999
2087
+ - type: precision_at_1000
2088
+ value: 0.11299999999999999
2089
+ - type: precision_at_3
2090
+ value: 28.778
2091
+ - type: precision_at_5
2092
+ value: 19.067
2093
+ - type: recall_at_1
2094
+ value: 64.994
2095
+ - type: recall_at_10
2096
+ value: 91.822
2097
+ - type: recall_at_100
2098
+ value: 97.0
2099
+ - type: recall_at_1000
2100
+ value: 100.0
2101
+ - type: recall_at_3
2102
+ value: 78.878
2103
+ - type: recall_at_5
2104
+ value: 85.172
2105
+ - task:
2106
+ type: PairClassification
2107
+ dataset:
2108
+ name: MTEB SprintDuplicateQuestions
2109
+ type: mteb/sprintduplicatequestions-pairclassification
2110
+ config: default
2111
+ split: test
2112
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2113
+ metrics:
2114
+ - type: cos_sim_accuracy
2115
+ value: 99.72079207920792
2116
+ - type: cos_sim_ap
2117
+ value: 93.00265215525152
2118
+ - type: cos_sim_f1
2119
+ value: 85.06596306068602
2120
+ - type: cos_sim_precision
2121
+ value: 90.05586592178771
2122
+ - type: cos_sim_recall
2123
+ value: 80.60000000000001
2124
+ - type: dot_accuracy
2125
+ value: 99.66039603960397
2126
+ - type: dot_ap
2127
+ value: 91.22371407479089
2128
+ - type: dot_f1
2129
+ value: 82.34693877551021
2130
+ - type: dot_precision
2131
+ value: 84.0625
2132
+ - type: dot_recall
2133
+ value: 80.7
2134
+ - type: euclidean_accuracy
2135
+ value: 99.71881188118812
2136
+ - type: euclidean_ap
2137
+ value: 92.88449963304728
2138
+ - type: euclidean_f1
2139
+ value: 85.19480519480518
2140
+ - type: euclidean_precision
2141
+ value: 88.64864864864866
2142
+ - type: euclidean_recall
2143
+ value: 82.0
2144
+ - type: manhattan_accuracy
2145
+ value: 99.73267326732673
2146
+ - type: manhattan_ap
2147
+ value: 93.23055393056883
2148
+ - type: manhattan_f1
2149
+ value: 85.88957055214725
2150
+ - type: manhattan_precision
2151
+ value: 87.86610878661088
2152
+ - type: manhattan_recall
2153
+ value: 84.0
2154
+ - type: max_accuracy
2155
+ value: 99.73267326732673
2156
+ - type: max_ap
2157
+ value: 93.23055393056883
2158
+ - type: max_f1
2159
+ value: 85.88957055214725
2160
+ - task:
2161
+ type: Clustering
2162
+ dataset:
2163
+ name: MTEB StackExchangeClustering
2164
+ type: mteb/stackexchange-clustering
2165
+ config: default
2166
+ split: test
2167
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2168
+ metrics:
2169
+ - type: v_measure
2170
+ value: 77.3305735900358
2171
+ - task:
2172
+ type: Clustering
2173
+ dataset:
2174
+ name: MTEB StackExchangeClusteringP2P
2175
+ type: mteb/stackexchange-clustering-p2p
2176
+ config: default
2177
+ split: test
2178
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2179
+ metrics:
2180
+ - type: v_measure
2181
+ value: 41.32967136540674
2182
+ - task:
2183
+ type: Reranking
2184
+ dataset:
2185
+ name: MTEB StackOverflowDupQuestions
2186
+ type: mteb/stackoverflowdupquestions-reranking
2187
+ config: default
2188
+ split: test
2189
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2190
+ metrics:
2191
+ - type: map
2192
+ value: 55.95514866379359
2193
+ - type: mrr
2194
+ value: 56.95423245055598
2195
+ - task:
2196
+ type: Summarization
2197
+ dataset:
2198
+ name: MTEB SummEval
2199
+ type: mteb/summeval
2200
+ config: default
2201
+ split: test
2202
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2203
+ metrics:
2204
+ - type: cos_sim_pearson
2205
+ value: 30.783007208997144
2206
+ - type: cos_sim_spearman
2207
+ value: 30.373444721540533
2208
+ - type: dot_pearson
2209
+ value: 29.210604111143905
2210
+ - type: dot_spearman
2211
+ value: 29.98809758085659
2212
+ - task:
2213
+ type: Retrieval
2214
+ dataset:
2215
+ name: MTEB TRECCOVID
2216
+ type: trec-covid
2217
+ config: default
2218
+ split: test
2219
+ revision: None
2220
+ metrics:
2221
+ - type: map_at_1
2222
+ value: 0.234
2223
+ - type: map_at_10
2224
+ value: 1.894
2225
+ - type: map_at_100
2226
+ value: 1.894
2227
+ - type: map_at_1000
2228
+ value: 1.894
2229
+ - type: map_at_3
2230
+ value: 0.636
2231
+ - type: map_at_5
2232
+ value: 1.0
2233
+ - type: mrr_at_1
2234
+ value: 88.0
2235
+ - type: mrr_at_10
2236
+ value: 93.667
2237
+ - type: mrr_at_100
2238
+ value: 93.667
2239
+ - type: mrr_at_1000
2240
+ value: 93.667
2241
+ - type: mrr_at_3
2242
+ value: 93.667
2243
+ - type: mrr_at_5
2244
+ value: 93.667
2245
+ - type: ndcg_at_1
2246
+ value: 85.0
2247
+ - type: ndcg_at_10
2248
+ value: 74.798
2249
+ - type: ndcg_at_100
2250
+ value: 16.462
2251
+ - type: ndcg_at_1000
2252
+ value: 7.0889999999999995
2253
+ - type: ndcg_at_3
2254
+ value: 80.754
2255
+ - type: ndcg_at_5
2256
+ value: 77.319
2257
+ - type: precision_at_1
2258
+ value: 88.0
2259
+ - type: precision_at_10
2260
+ value: 78.0
2261
+ - type: precision_at_100
2262
+ value: 7.8
2263
+ - type: precision_at_1000
2264
+ value: 0.7799999999999999
2265
+ - type: precision_at_3
2266
+ value: 83.333
2267
+ - type: precision_at_5
2268
+ value: 80.80000000000001
2269
+ - type: recall_at_1
2270
+ value: 0.234
2271
+ - type: recall_at_10
2272
+ value: 2.093
2273
+ - type: recall_at_100
2274
+ value: 2.093
2275
+ - type: recall_at_1000
2276
+ value: 2.093
2277
+ - type: recall_at_3
2278
+ value: 0.662
2279
+ - type: recall_at_5
2280
+ value: 1.0739999999999998
2281
+ - task:
2282
+ type: Retrieval
2283
+ dataset:
2284
+ name: MTEB Touche2020
2285
+ type: webis-touche2020
2286
+ config: default
2287
+ split: test
2288
+ revision: None
2289
+ metrics:
2290
+ - type: map_at_1
2291
+ value: 2.703
2292
+ - type: map_at_10
2293
+ value: 10.866000000000001
2294
+ - type: map_at_100
2295
+ value: 10.866000000000001
2296
+ - type: map_at_1000
2297
+ value: 10.866000000000001
2298
+ - type: map_at_3
2299
+ value: 5.909
2300
+ - type: map_at_5
2301
+ value: 7.35
2302
+ - type: mrr_at_1
2303
+ value: 36.735
2304
+ - type: mrr_at_10
2305
+ value: 53.583000000000006
2306
+ - type: mrr_at_100
2307
+ value: 53.583000000000006
2308
+ - type: mrr_at_1000
2309
+ value: 53.583000000000006
2310
+ - type: mrr_at_3
2311
+ value: 49.32
2312
+ - type: mrr_at_5
2313
+ value: 51.769
2314
+ - type: ndcg_at_1
2315
+ value: 34.694
2316
+ - type: ndcg_at_10
2317
+ value: 27.926000000000002
2318
+ - type: ndcg_at_100
2319
+ value: 22.701
2320
+ - type: ndcg_at_1000
2321
+ value: 22.701
2322
+ - type: ndcg_at_3
2323
+ value: 32.073
2324
+ - type: ndcg_at_5
2325
+ value: 28.327999999999996
2326
+ - type: precision_at_1
2327
+ value: 36.735
2328
+ - type: precision_at_10
2329
+ value: 24.694
2330
+ - type: precision_at_100
2331
+ value: 2.469
2332
+ - type: precision_at_1000
2333
+ value: 0.247
2334
+ - type: precision_at_3
2335
+ value: 31.973000000000003
2336
+ - type: precision_at_5
2337
+ value: 26.939
2338
+ - type: recall_at_1
2339
+ value: 2.703
2340
+ - type: recall_at_10
2341
+ value: 17.702
2342
+ - type: recall_at_100
2343
+ value: 17.702
2344
+ - type: recall_at_1000
2345
+ value: 17.702
2346
+ - type: recall_at_3
2347
+ value: 7.208
2348
+ - type: recall_at_5
2349
+ value: 9.748999999999999
2350
+ - task:
2351
+ type: Classification
2352
+ dataset:
2353
+ name: MTEB ToxicConversationsClassification
2354
+ type: mteb/toxic_conversations_50k
2355
+ config: default
2356
+ split: test
2357
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2358
+ metrics:
2359
+ - type: accuracy
2360
+ value: 70.79960000000001
2361
+ - type: ap
2362
+ value: 15.467565415565815
2363
+ - type: f1
2364
+ value: 55.28639823443618
2365
+ - task:
2366
+ type: Classification
2367
+ dataset:
2368
+ name: MTEB TweetSentimentExtractionClassification
2369
+ type: mteb/tweet_sentiment_extraction
2370
+ config: default
2371
+ split: test
2372
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2373
+ metrics:
2374
+ - type: accuracy
2375
+ value: 64.7792869269949
2376
+ - type: f1
2377
+ value: 65.08597154774318
2378
+ - task:
2379
+ type: Clustering
2380
+ dataset:
2381
+ name: MTEB TwentyNewsgroupsClustering
2382
+ type: mteb/twentynewsgroups-clustering
2383
+ config: default
2384
+ split: test
2385
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2386
+ metrics:
2387
+ - type: v_measure
2388
+ value: 55.70352297774293
2389
+ - task:
2390
+ type: PairClassification
2391
+ dataset:
2392
+ name: MTEB TwitterSemEval2015
2393
+ type: mteb/twittersemeval2015-pairclassification
2394
+ config: default
2395
+ split: test
2396
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2397
+ metrics:
2398
+ - type: cos_sim_accuracy
2399
+ value: 88.27561542588067
2400
+ - type: cos_sim_ap
2401
+ value: 81.08262141256193
2402
+ - type: cos_sim_f1
2403
+ value: 73.82341501361338
2404
+ - type: cos_sim_precision
2405
+ value: 72.5720112159062
2406
+ - type: cos_sim_recall
2407
+ value: 75.11873350923483
2408
+ - type: dot_accuracy
2409
+ value: 86.66030875603504
2410
+ - type: dot_ap
2411
+ value: 76.6052349228621
2412
+ - type: dot_f1
2413
+ value: 70.13897280966768
2414
+ - type: dot_precision
2415
+ value: 64.70457079152732
2416
+ - type: dot_recall
2417
+ value: 76.56992084432717
2418
+ - type: euclidean_accuracy
2419
+ value: 88.37098408535495
2420
+ - type: euclidean_ap
2421
+ value: 81.12515230092113
2422
+ - type: euclidean_f1
2423
+ value: 74.10338225909379
2424
+ - type: euclidean_precision
2425
+ value: 71.76761433868974
2426
+ - type: euclidean_recall
2427
+ value: 76.59630606860158
2428
+ - type: manhattan_accuracy
2429
+ value: 88.34118137926924
2430
+ - type: manhattan_ap
2431
+ value: 80.95751834536561
2432
+ - type: manhattan_f1
2433
+ value: 73.9119496855346
2434
+ - type: manhattan_precision
2435
+ value: 70.625
2436
+ - type: manhattan_recall
2437
+ value: 77.5197889182058
2438
+ - type: max_accuracy
2439
+ value: 88.37098408535495
2440
+ - type: max_ap
2441
+ value: 81.12515230092113
2442
+ - type: max_f1
2443
+ value: 74.10338225909379
2444
+ - task:
2445
+ type: PairClassification
2446
+ dataset:
2447
+ name: MTEB TwitterURLCorpus
2448
+ type: mteb/twitterurlcorpus-pairclassification
2449
+ config: default
2450
+ split: test
2451
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2452
+ metrics:
2453
+ - type: cos_sim_accuracy
2454
+ value: 89.79896767182831
2455
+ - type: cos_sim_ap
2456
+ value: 87.40071784061065
2457
+ - type: cos_sim_f1
2458
+ value: 79.87753144712087
2459
+ - type: cos_sim_precision
2460
+ value: 76.67304015296367
2461
+ - type: cos_sim_recall
2462
+ value: 83.3615645210964
2463
+ - type: dot_accuracy
2464
+ value: 88.95486474948578
2465
+ - type: dot_ap
2466
+ value: 86.00227979119943
2467
+ - type: dot_f1
2468
+ value: 78.54601474525914
2469
+ - type: dot_precision
2470
+ value: 75.00525394045535
2471
+ - type: dot_recall
2472
+ value: 82.43763473975977
2473
+ - type: euclidean_accuracy
2474
+ value: 89.7892653393876
2475
+ - type: euclidean_ap
2476
+ value: 87.42174706480819
2477
+ - type: euclidean_f1
2478
+ value: 80.07283321194465
2479
+ - type: euclidean_precision
2480
+ value: 75.96738529574351
2481
+ - type: euclidean_recall
2482
+ value: 84.6473668001232
2483
+ - type: manhattan_accuracy
2484
+ value: 89.8474793340319
2485
+ - type: manhattan_ap
2486
+ value: 87.47814292587448
2487
+ - type: manhattan_f1
2488
+ value: 80.15461150280949
2489
+ - type: manhattan_precision
2490
+ value: 74.88798234468
2491
+ - type: manhattan_recall
2492
+ value: 86.21804742839544
2493
+ - type: max_accuracy
2494
+ value: 89.8474793340319
2495
+ - type: max_ap
2496
+ value: 87.47814292587448
2497
+ - type: max_f1
2498
+ value: 80.15461150280949
2499
+ ---
2500
+
2501
+ <div style="width: auto; margin-left: auto; margin-right: auto">
2502
+ <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
2503
+ </div>
2504
+ <div style="display: flex; justify-content: space-between; width: 100%;">
2505
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
2506
+ <p style="margin-top: 0.5em; margin-bottom: 0em;">
2507
+ Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
2508
+ </p>
2509
+ </div>
2510
+ </div>
2511
+
2512
+ ## GritLM/GritLM-7B - GGUF
2513
+
2514
+ This repo contains GGUF format model files for [GritLM/GritLM-7B](https://huggingface.co/GritLM/GritLM-7B).
2515
+
2516
+ The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
2517
+
2518
+ ## Prompt template
2519
+
2520
+ ```
2521
+ <s><|user|>
2522
+ {prompt}
2523
+ <|assistant|>
2524
+ ```
2525
+
2526
+ ## Model file specification
2527
+
2528
+ | Filename | Quant type | File Size | Description |
2529
+ | -------- | ---------- | --------- | ----------- |
2530
+ | [GritLM-7B-Q2_K.gguf](https://huggingface.co/tensorblock/GritLM-7B-GGUF/tree/main/GritLM-7B-Q2_K.gguf) | Q2_K | 2.532 GB | smallest, significant quality loss - not recommended for most purposes |
2531
+ | [GritLM-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/GritLM-7B-GGUF/tree/main/GritLM-7B-Q3_K_S.gguf) | Q3_K_S | 2.947 GB | very small, high quality loss |
2532
+ | [GritLM-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/GritLM-7B-GGUF/tree/main/GritLM-7B-Q3_K_M.gguf) | Q3_K_M | 3.277 GB | very small, high quality loss |
2533
+ | [GritLM-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/GritLM-7B-GGUF/tree/main/GritLM-7B-Q3_K_L.gguf) | Q3_K_L | 3.560 GB | small, substantial quality loss |
2534
+ | [GritLM-7B-Q4_0.gguf](https://huggingface.co/tensorblock/GritLM-7B-GGUF/tree/main/GritLM-7B-Q4_0.gguf) | Q4_0 | 3.827 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
2535
+ | [GritLM-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/GritLM-7B-GGUF/tree/main/GritLM-7B-Q4_K_S.gguf) | Q4_K_S | 3.856 GB | small, greater quality loss |
2536
+ | [GritLM-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/GritLM-7B-GGUF/tree/main/GritLM-7B-Q4_K_M.gguf) | Q4_K_M | 4.068 GB | medium, balanced quality - recommended |
2537
+ | [GritLM-7B-Q5_0.gguf](https://huggingface.co/tensorblock/GritLM-7B-GGUF/tree/main/GritLM-7B-Q5_0.gguf) | Q5_0 | 4.654 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
2538
+ | [GritLM-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/GritLM-7B-GGUF/tree/main/GritLM-7B-Q5_K_S.gguf) | Q5_K_S | 4.654 GB | large, low quality loss - recommended |
2539
+ | [GritLM-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/GritLM-7B-GGUF/tree/main/GritLM-7B-Q5_K_M.gguf) | Q5_K_M | 4.779 GB | large, very low quality loss - recommended |
2540
+ | [GritLM-7B-Q6_K.gguf](https://huggingface.co/tensorblock/GritLM-7B-GGUF/tree/main/GritLM-7B-Q6_K.gguf) | Q6_K | 5.534 GB | very large, extremely low quality loss |
2541
+ | [GritLM-7B-Q8_0.gguf](https://huggingface.co/tensorblock/GritLM-7B-GGUF/tree/main/GritLM-7B-Q8_0.gguf) | Q8_0 | 7.167 GB | very large, extremely low quality loss - not recommended |
2542
+
2543
+
2544
+ ## Downloading instruction
2545
+
2546
+ ### Command line
2547
+
2548
+ Firstly, install Huggingface Client
2549
+
2550
+ ```shell
2551
+ pip install -U "huggingface_hub[cli]"
2552
+ ```
2553
+
2554
+ Then, downoad the individual model file the a local directory
2555
+
2556
+ ```shell
2557
+ huggingface-cli download tensorblock/GritLM-7B-GGUF --include "GritLM-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
2558
+ ```
2559
+
2560
+ If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
2561
+
2562
+ ```shell
2563
+ huggingface-cli download tensorblock/GritLM-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
2564
+ ```