svanlin-tencent commited on
Commit
1fd28a8
·
1 Parent(s): 4a9ac98
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Hunyuan-A50B-Pretrain/config.json +0 -46
  2. Hunyuan-A50B-Pretrain/configuration_hunyuan.py +0 -192
  3. Hunyuan-A50B-Pretrain/generation_config.json +0 -12
  4. Hunyuan-A50B-Pretrain/hy.tiktoken +0 -0
  5. Hunyuan-A50B-Pretrain/modeling_hunyuan.py +0 -1715
  6. Hunyuan-A50B-Pretrain/pytorch_model-00001-of-00080.bin +0 -3
  7. Hunyuan-A50B-Pretrain/pytorch_model-00002-of-00080.bin +0 -3
  8. Hunyuan-A50B-Pretrain/pytorch_model-00003-of-00080.bin +0 -3
  9. Hunyuan-A50B-Pretrain/pytorch_model-00004-of-00080.bin +0 -3
  10. Hunyuan-A50B-Pretrain/pytorch_model-00005-of-00080.bin +0 -3
  11. Hunyuan-A50B-Pretrain/pytorch_model-00006-of-00080.bin +0 -3
  12. Hunyuan-A50B-Pretrain/pytorch_model-00007-of-00080.bin +0 -3
  13. Hunyuan-A50B-Pretrain/pytorch_model-00008-of-00080.bin +0 -3
  14. Hunyuan-A50B-Pretrain/pytorch_model-00009-of-00080.bin +0 -3
  15. Hunyuan-A50B-Pretrain/pytorch_model-00010-of-00080.bin +0 -3
  16. Hunyuan-A50B-Pretrain/pytorch_model-00011-of-00080.bin +0 -3
  17. Hunyuan-A50B-Pretrain/pytorch_model-00012-of-00080.bin +0 -3
  18. Hunyuan-A50B-Pretrain/pytorch_model-00013-of-00080.bin +0 -3
  19. Hunyuan-A50B-Pretrain/pytorch_model-00014-of-00080.bin +0 -3
  20. Hunyuan-A50B-Pretrain/pytorch_model-00015-of-00080.bin +0 -3
  21. Hunyuan-A50B-Pretrain/pytorch_model-00016-of-00080.bin +0 -3
  22. Hunyuan-A50B-Pretrain/pytorch_model-00017-of-00080.bin +0 -3
  23. Hunyuan-A50B-Pretrain/pytorch_model-00018-of-00080.bin +0 -3
  24. Hunyuan-A50B-Pretrain/pytorch_model-00019-of-00080.bin +0 -3
  25. Hunyuan-A50B-Pretrain/pytorch_model-00020-of-00080.bin +0 -3
  26. Hunyuan-A50B-Pretrain/pytorch_model-00021-of-00080.bin +0 -3
  27. Hunyuan-A50B-Pretrain/pytorch_model-00022-of-00080.bin +0 -3
  28. Hunyuan-A50B-Pretrain/pytorch_model-00023-of-00080.bin +0 -3
  29. Hunyuan-A50B-Pretrain/pytorch_model-00024-of-00080.bin +0 -3
  30. Hunyuan-A50B-Pretrain/pytorch_model-00025-of-00080.bin +0 -3
  31. Hunyuan-A50B-Pretrain/pytorch_model-00026-of-00080.bin +0 -3
  32. Hunyuan-A50B-Pretrain/pytorch_model-00027-of-00080.bin +0 -3
  33. Hunyuan-A50B-Pretrain/pytorch_model-00028-of-00080.bin +0 -3
  34. Hunyuan-A50B-Pretrain/pytorch_model-00029-of-00080.bin +0 -3
  35. Hunyuan-A50B-Pretrain/pytorch_model-00030-of-00080.bin +0 -3
  36. Hunyuan-A50B-Pretrain/pytorch_model-00031-of-00080.bin +0 -3
  37. Hunyuan-A50B-Pretrain/pytorch_model-00032-of-00080.bin +0 -3
  38. Hunyuan-A50B-Pretrain/pytorch_model-00033-of-00080.bin +0 -3
  39. Hunyuan-A50B-Pretrain/pytorch_model-00034-of-00080.bin +0 -3
  40. Hunyuan-A50B-Pretrain/pytorch_model-00035-of-00080.bin +0 -3
  41. Hunyuan-A50B-Pretrain/pytorch_model-00036-of-00080.bin +0 -3
  42. Hunyuan-A50B-Pretrain/pytorch_model-00037-of-00080.bin +0 -3
  43. Hunyuan-A50B-Pretrain/pytorch_model-00038-of-00080.bin +0 -3
  44. Hunyuan-A50B-Pretrain/pytorch_model-00039-of-00080.bin +0 -3
  45. Hunyuan-A50B-Pretrain/pytorch_model-00040-of-00080.bin +0 -3
  46. Hunyuan-A50B-Pretrain/pytorch_model-00041-of-00080.bin +0 -3
  47. Hunyuan-A50B-Pretrain/pytorch_model-00042-of-00080.bin +0 -3
  48. Hunyuan-A50B-Pretrain/pytorch_model-00043-of-00080.bin +0 -3
  49. Hunyuan-A50B-Pretrain/pytorch_model-00044-of-00080.bin +0 -3
  50. Hunyuan-A50B-Pretrain/pytorch_model-00045-of-00080.bin +0 -3
Hunyuan-A50B-Pretrain/config.json DELETED
@@ -1,46 +0,0 @@
1
- {
2
- "attention_bias": false,
3
- "attention_dropout": 0.0,
4
- "architectures": [
5
- "HunYuanForCausalLM"
6
- ],
7
- "auto_map": {
8
- "AutoConfig": "configuration_hunyuan.HunYuanConfig",
9
- "AutoModel": "modeling_hunyuan.HunyuanModel",
10
- "AutoModelForCausalLM": "modeling_hunyuan.HunYuanForCausalLM"
11
- },
12
- "bos_token_id": 1,
13
- "capacity_factor": 1.0,
14
- "cla_share_factor": 2,
15
- "eos_token_id": 2,
16
- "hidden_act": "silu",
17
- "hidden_size": 6400,
18
- "initializer_range": 0.02,
19
- "intermediate_size": 18304,
20
- "max_position_embeddings": 262144,
21
- "model_type": "hunyuan",
22
- "moe_drop_tokens": false,
23
- "moe_random_routing_dropped_token": false,
24
- "moe_topk": 1,
25
- "num_attention_heads": 80,
26
- "num_experts": 16,
27
- "num_hidden_layers": 64,
28
- "num_key_value_heads": 8,
29
- "num_shared_expert": 1,
30
- "pad_token_id": 0,
31
- "pretraining_tp": 1,
32
- "rms_norm_eps": 1e-05,
33
- "rope_scaling": {
34
- "alpha": 100000.0,
35
- "factor": 1.0,
36
- "type": "dynamic"
37
- },
38
- "rope_theta": 10000.0,
39
- "tie_word_embeddings": true,
40
- "transformers_version": "4.41.2",
41
- "use_cache": true,
42
- "use_cla": true,
43
- "use_mixed_mlp_moe": true,
44
- "use_qk_norm": true,
45
- "vocab_size": 128512
46
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hunyuan-A50B-Pretrain/configuration_hunyuan.py DELETED
@@ -1,192 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 Tencent Inc. All Rights Reserved.
3
- """ HunYuan model configuration"""
4
-
5
- from transformers.configuration_utils import PretrainedConfig
6
- from transformers.utils import logging
7
-
8
-
9
- logger = logging.get_logger(__name__)
10
-
11
-
12
- class HunYuanConfig(PretrainedConfig):
13
- r"""
14
- This is the configuration class to store the configuration of a [`HunYuanModel`]. It is used to instantiate an
15
- HunYuan model according to the specified arguments, defining the model architecture. Instantiating a configuration
16
- with the defaults will yield a similar configuration to that of the HunYuan-7B.
17
-
18
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
19
- documentation from [`PretrainedConfig`] for more information.
20
-
21
-
22
- Args:
23
- vocab_size (`int`, *optional*, defaults to 32000):
24
- Vocabulary size of the HunYuan model. Defines the number of different tokens that can be represented by the
25
- `inputs_ids` passed when calling [`HunYuanModel`]
26
- hidden_size (`int`, *optional*, defaults to 4096):
27
- Dimension of the hidden representations.
28
- intermediate_size (`int`, *optional*, defaults to 11008):
29
- Dimension of the MLP representations.
30
- num_hidden_layers (`int`, *optional*, defaults to 32):
31
- Number of hidden layers in the Transformer decoder.
32
- num_attention_heads (`int`, *optional*, defaults to 32):
33
- Number of attention heads for each attention layer in the Transformer decoder.
34
- num_key_value_heads (`int`, *optional*):
35
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
36
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
37
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
38
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
39
- by meanpooling all the original heads within that group. For more details checkout [this
40
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
41
- `num_attention_heads`.
42
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
43
- The non-linear activation function (function or string) in the decoder.
44
- max_position_embeddings (`int`, *optional*, defaults to 2048):
45
- The maximum sequence length that this model might ever be used with.
46
- initializer_range (`float`, *optional*, defaults to 0.02):
47
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
48
- rms_norm_eps (`float`, *optional*, defaults to 1e-06):
49
- The epsilon used by the rms normalization layers.
50
- use_cache (`bool`, *optional*, defaults to `True`):
51
- Whether or not the model should return the last key/values attentions (not used by all models). Only
52
- relevant if `config.is_decoder=True`.
53
- pad_token_id (`int`, *optional*):
54
- Padding token id.
55
- bos_token_id (`int`, *optional*, defaults to 1):
56
- Beginning of stream token id.
57
- eos_token_id (`int`, *optional*, defaults to 2):
58
- End of stream token id.
59
- pretraining_tp (`int`, *optional*, defaults to 1):
60
- Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
61
- document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
62
- necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
63
- issue](https://github.com/pytorch/pytorch/issues/76232).
64
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
65
- Whether to tie weight embeddings
66
- rope_theta (`float`, *optional*, defaults to 10000.0):
67
- The base period of the RoPE embeddings.
68
- rope_scaling (`Dict`, *optional*):
69
- Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
70
- strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
71
- `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
72
- `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
73
- these scaling strategies behave:
74
- https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
75
- experimental feature, subject to breaking API changes in future versions.
76
- attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
77
- Whether to use a bias in the query, key, value and output projection layers during self-attention.
78
- attention_dropout (`float`, *optional*, defaults to 0.0):
79
- The dropout ratio for the attention probabilities.
80
- use_qk_norm (`bool`, *optional*, defaults to `False`):
81
- Whether query and key in attention use norm
82
- use_cla (`bool`, *optional*, defaults to `False`):
83
- Whether to use CLA in attention
84
- cla_share_factor (`int`, *optional*, defaults to 1):
85
- The share factor of CLA
86
- """
87
-
88
- model_type = "hunyuan"
89
- keys_to_ignore_at_inference = ["past_key_values"]
90
-
91
- def __init__(
92
- self,
93
- vocab_size=290943,
94
- hidden_size=4096,
95
- intermediate_size=11008,
96
- num_hidden_layers=32,
97
- num_attention_heads=32,
98
- num_key_value_heads=None,
99
- hidden_act="silu",
100
- max_position_embeddings=2048,
101
- initializer_range=0.02,
102
- rms_norm_eps=1e-5,
103
- use_cache=True,
104
- pad_token_id=0,
105
- bos_token_id=1,
106
- eos_token_id=2,
107
- pretraining_tp=1,
108
- tie_word_embeddings=False,
109
- rope_theta=10000.0,
110
- rope_scaling=None,
111
- attention_bias=False,
112
- attention_dropout=0.0,
113
- use_qk_norm=False,
114
- use_cla=False,
115
- cla_share_factor=1,
116
- num_experts=1,
117
- use_mixed_mlp_moe=False,
118
- num_shared_expert=1,
119
- moe_topk=1,
120
- capacity_factor=1.0,
121
- moe_drop_tokens=False,
122
- moe_random_routing_dropped_token=False,
123
- **kwargs,
124
- ):
125
- self.vocab_size = vocab_size
126
- self.max_position_embeddings = max_position_embeddings
127
- self.hidden_size = hidden_size
128
- self.intermediate_size = intermediate_size
129
- self.num_hidden_layers = num_hidden_layers
130
- self.num_attention_heads = num_attention_heads
131
- self.num_experts = num_experts
132
- self.use_mixed_mlp_moe = use_mixed_mlp_moe
133
- self.num_shared_expert = num_shared_expert
134
- self.moe_topk = moe_topk
135
- self.capacity_factor = capacity_factor
136
- self.moe_drop_tokens = moe_drop_tokens
137
- self.moe_random_routing_dropped_token = moe_random_routing_dropped_token
138
-
139
- # for backward compatibility
140
- if num_key_value_heads is None:
141
- num_key_value_heads = num_attention_heads
142
-
143
- self.num_key_value_heads = num_key_value_heads
144
- self.hidden_act = hidden_act
145
- self.initializer_range = initializer_range
146
- self.rms_norm_eps = rms_norm_eps
147
- self.pretraining_tp = pretraining_tp
148
- self.use_cache = use_cache
149
- self.rope_theta = rope_theta
150
- self.rope_scaling = rope_scaling
151
- # self._rope_scaling_validation() # TODO: Need validation?
152
- self.attention_bias = attention_bias
153
- self.attention_dropout = attention_dropout
154
- self.use_qk_norm = use_qk_norm
155
- self.use_cla = use_cla
156
- self.cla_share_factor = cla_share_factor
157
-
158
- super().__init__(
159
- pad_token_id=pad_token_id,
160
- bos_token_id=bos_token_id,
161
- eos_token_id=eos_token_id,
162
- tie_word_embeddings=tie_word_embeddings,
163
- **kwargs,
164
- )
165
-
166
- def _rope_scaling_validation(self):
167
- """
168
- Validate the `rope_scaling` configuration.
169
- """
170
- if self.rope_scaling is None:
171
- return
172
-
173
- if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
174
- raise ValueError(
175
- "`rope_scaling` must be a dictionary with with two fields, `type` and `factor` or `type` and `alpha`, "
176
- f"got {self.rope_scaling}"
177
- )
178
- rope_scaling_type = self.rope_scaling.get("type", None)
179
- rope_scaling_factor = self.rope_scaling.get("factor", None)
180
- rope_scaling_alpha = self.rope_scaling.get("alpha", None)
181
- if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
182
- raise ValueError(
183
- f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
184
- )
185
- if rope_scaling_factor is None and rope_scaling_alpha is None:
186
- raise ValueError("`rope_scaling`'s factor or alpha field must be have one, got both of none")
187
- if rope_scaling_factor is not None:
188
- if not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
189
- raise ValueError(f"`rope_scaling`'s factor field must be a float > 1.0, got {rope_scaling_factor}")
190
- if rope_scaling_alpha is not None:
191
- if not isinstance(rope_scaling_alpha, float) or rope_scaling_alpha <= 1.0:
192
- raise ValueError(f"`rope_scaling`'s alpha field must be a float > 1.0, got {rope_scaling_alpha}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hunyuan-A50B-Pretrain/generation_config.json DELETED
@@ -1,12 +0,0 @@
1
- {
2
- "chat_format": "chatml",
3
- "eos_token_id": 127957,
4
- "pad_token_id": 127961,
5
- "max_window_size": 6144,
6
- "max_new_tokens": 512,
7
- "do_sample": true,
8
- "top_k": 20,
9
- "top_p": 0.7,
10
- "repetition_penalty": 1.0,
11
- "transformers_version": "4.31.0"
12
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
Hunyuan-A50B-Pretrain/hy.tiktoken DELETED
The diff for this file is too large to render. See raw diff
 
Hunyuan-A50B-Pretrain/modeling_hunyuan.py DELETED
@@ -1,1715 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 Tencent Inc. All Rights Reserved.
3
- #
4
- """ PyTorch HunYuan model."""
5
-
6
- import math
7
- import warnings
8
- from typing import List, Optional, Tuple, Union
9
-
10
- import torch
11
- from torch import Tensor
12
- import torch.nn.functional as F
13
- import torch.utils.checkpoint
14
- from torch import nn
15
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
16
-
17
- from transformers.activations import ACT2FN
18
- from transformers.cache_utils import Cache, DynamicCache
19
- from transformers.modeling_attn_mask_utils import (
20
- AttentionMaskConverter,
21
- _prepare_4d_attention_mask,
22
- _prepare_4d_causal_attention_mask,
23
- _prepare_4d_causal_attention_mask_for_sdpa,
24
- )
25
- from transformers.modeling_outputs import (
26
- BaseModelOutputWithPast,
27
- CausalLMOutputWithPast,
28
- SequenceClassifierOutputWithPast
29
- )
30
- from transformers.modeling_utils import PreTrainedModel
31
- from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
32
- from transformers.utils import (
33
- add_start_docstrings,
34
- add_start_docstrings_to_model_forward,
35
- is_flash_attn_2_available,
36
- is_flash_attn_greater_or_equal_2_10,
37
- logging,
38
- replace_return_docstrings,
39
- )
40
- from transformers.utils.import_utils import is_torch_fx_available
41
- from .configuration_hunyuan import HunYuanConfig
42
-
43
-
44
- if is_flash_attn_2_available():
45
- from flash_attn import flash_attn_func, flash_attn_varlen_func
46
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
47
-
48
-
49
- # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
50
- # It means that the function will not be traced through and simply appear as a node in the graph.
51
- if is_torch_fx_available():
52
- if not is_torch_greater_or_equal_than_1_13:
53
- import torch.fx
54
-
55
- _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
56
-
57
-
58
- logger = logging.get_logger(__name__)
59
-
60
- _CONFIG_FOR_DOC = "HunYuanConfig"
61
-
62
-
63
- def topkgating(logits: Tensor, topk: int):
64
- logits = logits.float()
65
- gates = F.softmax(logits, dim=1)
66
- expert_capacity = topk * gates.shape[0]
67
- num_experts = int(gates.shape[1])
68
- # Top-k router probability and corresponding expert indices for each token.
69
- # Shape: [tokens_per_group, num_selected_experts].
70
- expert_gate, expert_index = torch.topk(gates, topk)
71
- expert_mask = F.one_hot(expert_index, num_experts)
72
- # For a given token, determine if it was routed to a given expert.
73
- # Shape: [tokens_per_group, num_experts]
74
- expert_mask_aux = expert_mask.max(dim=-2)[0]
75
- tokens_per_group_and_expert = torch.mean(expert_mask_aux.float(), dim=-2)
76
- router_prob_per_group_and_expert = torch.mean(gates.float(), dim=-2)
77
- l_aux = num_experts**2 * torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert)
78
-
79
- gates_s = torch.clamp(
80
- torch.matmul(expert_mask.float(), gates.unsqueeze(-1)).sum(dim=1), min=torch.finfo(gates.dtype).eps
81
- )
82
- router_probs = gates / gates_s
83
- # Make num_selected_experts the leading axis to ensure that top-1 choices
84
- # have priority over top-2 choices, which have priority over top-3 choices,
85
- # etc.
86
- expert_index = torch.transpose(expert_index, 0, 1)
87
- # Shape: [num_selected_experts * tokens_per_group]
88
- expert_index = expert_index.reshape(-1)
89
-
90
- # Create mask out of indices.
91
- # Shape: [tokens_per_group * num_selected_experts, num_experts].
92
- expert_mask = F.one_hot(expert_index, num_experts).to(torch.int32)
93
- exp_counts = torch.sum(expert_mask, dim=0).detach()
94
-
95
- # Experts have a fixed capacity that we cannot exceed. A token's priority
96
- # within the expert's buffer is given by the masked, cumulative capacity of
97
- # its target expert.
98
- # Shape: [tokens_per_group * num_selected_experts, num_experts].
99
- token_priority = torch.cumsum(expert_mask, dim=0) * expert_mask - 1
100
- # Shape: [num_selected_experts, tokens_per_group, num_experts].
101
- token_priority = token_priority.reshape((topk, -1, num_experts))
102
- # Shape: [tokens_per_group, num_selected_experts, num_experts].
103
- token_priority = torch.transpose(token_priority, 0, 1)
104
- # For each token, across all selected experts, select the only non-negative
105
- # (unmasked) priority. Now, for group G routing to expert E, token T has
106
- # non-negative priority (i.e. token_priority[G,T,E] >= 0) if and only if E
107
- # is its targeted expert.
108
- # Shape: [tokens_per_group, num_experts].
109
- token_priority = torch.max(token_priority, dim=1)[0]
110
-
111
- # Token T can only be routed to expert E if its priority is positive and
112
- # less than the expert capacity. One-hot matrix will ignore indices outside
113
- # the range [0, expert_capacity).
114
- # Shape: [tokens_per_group, num_experts, expert_capacity].
115
- valid_mask = torch.logical_and(token_priority >= 0, token_priority < expert_capacity)
116
- token_priority = torch.masked_fill(token_priority, ~valid_mask, 0)
117
- dispatch_mask = F.one_hot(token_priority, expert_capacity).to(torch.bool)
118
- valid_mask = valid_mask.unsqueeze(-1).expand(-1, -1, expert_capacity)
119
- dispatch_mask = torch.masked_fill(dispatch_mask, ~valid_mask, 0)
120
-
121
- # The combine array will be used for combining expert outputs, scaled by the
122
- # router probabilities. Shape: [num_groups, tokens_per_group, num_experts,
123
- # expert_capacity].
124
- combine_weights = torch.einsum("...te,...tec->...tec", router_probs, dispatch_mask)
125
- exp_counts_capacity = torch.sum(dispatch_mask)
126
- exp_capacity_rate = exp_counts_capacity / (logits.shape[0]*topk)
127
-
128
- return [l_aux, exp_capacity_rate], combine_weights, dispatch_mask, exp_counts
129
-
130
-
131
- def top1gating(logits: Tensor, random_routing_dropped_token: bool = False):
132
- """Implements Top1Gating on logits."""
133
- # everything is in fp32 in this function
134
- logits = logits.float()
135
- gates = F.softmax(logits, dim=1)
136
- capacity = gates.shape[0]
137
-
138
- # Create a mask for 1st's expert per token
139
- # noisy gating
140
- indices1_s = torch.argmax(gates, dim=1)
141
- num_experts = int(gates.shape[1])
142
- mask1 = F.one_hot(indices1_s, num_classes=num_experts)
143
-
144
- # gating decisions
145
- # exp_counts = torch.sum(mask1, dim=0).detach().to('cpu')
146
- exp_counts = torch.sum(mask1, dim=0).detach()
147
-
148
- # Compute l_aux
149
- me = torch.mean(gates, dim=0)
150
- ce = torch.mean(mask1.float(), dim=0)
151
- l_aux = torch.sum(me * ce) * num_experts
152
- mask1_rand = mask1
153
-
154
- top_idx = torch.topk(mask1_rand, k=capacity, dim=0)[1]
155
-
156
- new_mask1 = mask1 * torch.zeros_like(mask1).scatter_(0, top_idx, 1)
157
- mask1 = new_mask1
158
- mask1_bk = mask1
159
- if random_routing_dropped_token:
160
- not_full = capacity - new_mask1.sum(dim=0)
161
- sorted_notfull, indices_notfull = torch.sort(not_full, descending=True)
162
- sorted_notfull = sorted_notfull.to(torch.int64)
163
- not_full_experts_ids = torch.repeat_interleave(indices_notfull, sorted_notfull)
164
- shuffle_not_full_ids = torch.randperm(not_full_experts_ids.shape[0])
165
- not_full_experts_ids = not_full_experts_ids[shuffle_not_full_ids]
166
- indices1_s_after_drop = torch.argmax(new_mask1, dim=1)
167
- # get drop idx
168
- drop_mask = 1 - new_mask1.sum(dim=1)
169
- drop_mask = drop_mask.bool()
170
- drop_idx = drop_mask.nonzero().view(-1)
171
- drop_num = drop_mask.sum().to(torch.int64)
172
- indices1_s_after_drop.scatter_(0, drop_idx, not_full_experts_ids[:drop_num])
173
- nodrop_mask1 = F.one_hot(indices1_s_after_drop, num_classes=num_experts)
174
- mask1 = nodrop_mask1
175
-
176
- # Compute locations in capacity buffer
177
- locations1 = torch.cumsum(mask1, dim=0) - 1
178
-
179
- # Store the capacity location for each token
180
- locations1_s = torch.sum(locations1 * mask1, dim=1)
181
-
182
- # Normalize gate probabilities
183
- mask1_float = mask1.float()
184
- gates = gates * mask1_float
185
-
186
- locations1_sc = F.one_hot(locations1_s, num_classes=capacity).float() # one hot to float
187
- combine_weights = torch.einsum("se,sc->sec", gates, locations1_sc)
188
-
189
- dispatch_mask = combine_weights.bool()
190
-
191
- exp_counts_capacity = torch.sum(mask1_bk)
192
- exp_capacity_rate = exp_counts_capacity / (logits.shape[0])
193
- return [l_aux, exp_capacity_rate], combine_weights, dispatch_mask, exp_counts
194
-
195
-
196
- def _get_unpad_data(attention_mask):
197
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
198
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
199
- max_seqlen_in_batch = seqlens_in_batch.max().item()
200
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
201
- return (
202
- indices,
203
- cu_seqlens,
204
- max_seqlen_in_batch,
205
- )
206
-
207
-
208
- def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
209
- warnings.warn(
210
- "Calling `transformers.models.llama.modeling_llama._prepare_4d_attention_mask` is deprecated and will be "
211
- "removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
212
- )
213
- return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
214
-
215
-
216
- def _make_causal_mask(
217
- input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
218
- ):
219
- warnings.warn(
220
- "Calling `transformers.models.llama.modeling_llama._make_causal_mask` is deprecated and will be removed in "
221
- "v4.37. Use `transformers.models.llama.modeling_llama.AttentionMaskConverter._make_causal_mask"
222
- )
223
- return AttentionMaskConverter._make_causal_mask(
224
- input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
225
- )
226
-
227
-
228
- class HunYuanRMSNorm(nn.Module):
229
- def __init__(self, hidden_size, eps=1e-6):
230
- """
231
- HunYuanRMSNorm is equivalent to T5LayerNorm
232
- """
233
- super().__init__()
234
- self.weight = nn.Parameter(torch.ones(hidden_size))
235
- self.variance_epsilon = eps
236
-
237
- def forward(self, hidden_states):
238
- input_dtype = hidden_states.dtype
239
- hidden_states = hidden_states.to(torch.float32)
240
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
241
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
242
- return self.weight * hidden_states.to(input_dtype)
243
-
244
-
245
- ALL_LAYERNORM_LAYERS.append(HunYuanRMSNorm)
246
-
247
-
248
- class HunYuanRotaryEmbedding(nn.Module):
249
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
250
- super().__init__()
251
-
252
- self.dim = dim
253
- self.max_position_embeddings = max_position_embeddings
254
- self.base = base
255
- inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
256
- inv_freq = inv_freq.bfloat16()
257
- self.register_buffer("inv_freq", inv_freq, persistent=False)
258
-
259
- # Build here to make `torch.jit.trace` work.
260
- self._set_cos_sin_cache(
261
- seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
262
- )
263
-
264
- def _set_cos_sin_cache(self, seq_len, device, dtype):
265
- self.max_seq_len_cached = seq_len
266
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
267
-
268
- freqs = torch.outer(t, self.inv_freq)
269
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
270
- emb = torch.cat((freqs, freqs), dim=-1).float()
271
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
272
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
273
-
274
- def forward(self, x, seq_len=None):
275
- # x: [bs, num_attention_heads, seq_len, head_size]
276
- if seq_len > self.max_seq_len_cached:
277
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
278
-
279
- return (
280
- self.cos_cached[:seq_len].to(dtype=x.dtype),
281
- self.sin_cached[:seq_len].to(dtype=x.dtype),
282
- )
283
-
284
-
285
- class HunYuanLinearScalingRotaryEmbedding(HunYuanRotaryEmbedding):
286
- """HunYuanRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
287
-
288
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
289
- self.scaling_factor = scaling_factor
290
- super().__init__(dim, max_position_embeddings, base, device)
291
-
292
- def _set_cos_sin_cache(self, seq_len, device, dtype):
293
- self.max_seq_len_cached = seq_len
294
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
295
- t = t / self.scaling_factor
296
-
297
- freqs = torch.outer(t, self.inv_freq)
298
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
299
- emb = torch.cat((freqs, freqs), dim=-1)
300
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
301
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
302
-
303
-
304
- class HunYuanDynamicNTKScalingRotaryEmbedding(HunYuanRotaryEmbedding):
305
- """
306
- HunYuanRotaryEmbedding extended with Dynamic NTK scaling.
307
- Credits to the Reddit users /u/bloc97 and /u/emozilla
308
- """
309
-
310
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
311
- self.scaling_factor = scaling_factor
312
- super().__init__(dim, max_position_embeddings, base, device)
313
-
314
- def _set_cos_sin_cache(self, seq_len, device, dtype):
315
- self.max_seq_len_cached = seq_len
316
-
317
- if seq_len > self.max_position_embeddings:
318
- base = self.base * (
319
- (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
320
- ) ** (self.dim / (self.dim - 2))
321
- inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
322
- self.register_buffer("inv_freq", inv_freq, persistent=False)
323
-
324
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
325
-
326
- freqs = torch.outer(t, self.inv_freq)
327
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
328
- emb = torch.cat((freqs, freqs), dim=-1)
329
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
330
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
331
-
332
-
333
- class HunYuanDynamicNTKAlphaRotaryEmbedding(HunYuanRotaryEmbedding):
334
- """
335
- HunYuanRotaryEmbedding extended with Dynamic NTK scaling.
336
- Credits to the Reddit users /u/bloc97 and /u/emozilla
337
- """
338
-
339
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_alpha=1.0):
340
- self.scaling_alpha = scaling_alpha
341
- super().__init__(dim, max_position_embeddings, base, device)
342
-
343
- def _set_cos_sin_cache(self, seq_len, device, dtype):
344
- self.max_seq_len_cached = seq_len
345
- base = self.base * self.scaling_alpha ** (self.dim / (self.dim-2))
346
- inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
347
-
348
- self.register_buffer("inv_freq", inv_freq, persistent=False)
349
-
350
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
351
-
352
- freqs = torch.outer(t, self.inv_freq)
353
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
354
- emb = torch.cat((freqs, freqs), dim=-1)
355
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
356
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
357
-
358
-
359
- def rotate_half(x):
360
- """Rotates half the hidden dims of the input."""
361
- x1 = x[..., : x.shape[-1] // 2]
362
- x2 = x[..., x.shape[-1] // 2:]
363
- return torch.cat((-x2, x1), dim=-1)
364
-
365
-
366
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
367
- """Applies Rotary Position Embedding to the query and key tensors.
368
-
369
- Args:
370
- q (`torch.Tensor`): The query tensor.
371
- k (`torch.Tensor`): The key tensor.
372
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
373
- sin (`torch.Tensor`): The sine part of the rotary embedding.
374
- position_ids (`torch.Tensor`):
375
- The position indices of the tokens corresponding to the query and key tensors. For example, this can be
376
- used to pass offsetted position ids when working with a KV-cache.
377
- unsqueeze_dim (`int`, *optional*, defaults to 1):
378
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
379
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
380
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
381
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
382
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
383
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
384
- Returns:
385
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
386
- """
387
- cos = cos[position_ids].unsqueeze(unsqueeze_dim)
388
- sin = sin[position_ids].unsqueeze(unsqueeze_dim)
389
- q_embed = (q * cos) + (rotate_half(q) * sin)
390
- k_embed = (k * cos) + (rotate_half(k) * sin)
391
- return q_embed, k_embed
392
-
393
-
394
- class HunYuanMLP(nn.Module):
395
- def __init__(self, config: HunYuanConfig, layer_idx=None, is_shared_mlp=False):
396
- super().__init__()
397
- self.config = config
398
- self.layer_idx = layer_idx
399
- self.hidden_size = config.hidden_size
400
- if is_shared_mlp:
401
- self.intermediate_size = config.intermediate_size * config.num_shared_expert
402
- else:
403
- self.intermediate_size = config.intermediate_size
404
- self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
405
- self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
406
- self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
407
- self.act_fn = ACT2FN[config.hidden_act]
408
-
409
- def forward(self, x):
410
- if self.config.pretraining_tp > 1:
411
- slice = self.intermediate_size // self.config.pretraining_tp
412
- gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
413
- up_proj_slices = self.up_proj.weight.split(slice, dim=0)
414
- down_proj_slices = self.down_proj.weight.split(slice, dim=1)
415
-
416
- gate_proj = torch.cat(
417
- [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
418
- )
419
- up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
420
-
421
- intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
422
- down_proj = [
423
- F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
424
- ]
425
- down_proj = sum(down_proj)
426
- else:
427
- down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
428
-
429
- return down_proj
430
-
431
-
432
- class HunYuanTopKGate(nn.Module):
433
- def __init__(self, config: HunYuanConfig, layer_idx: Optional[int] = None):
434
- super().__init__()
435
- self.config = config
436
- self.layer_idx = layer_idx
437
- self.moe_topk = config.moe_topk
438
- self.drop_tokens = config.moe_drop_tokens
439
- self.min_capacity = 8
440
- self.random_routing_dropped_token = config.moe_random_routing_dropped_token
441
- self.wg = nn.Linear(config.hidden_size, config.num_experts, bias=False, dtype=torch.float32)
442
-
443
- def forward(self, hidden_states):
444
- bsz, seq_len, hidden_size = hidden_states.shape
445
- hidden_states = hidden_states.reshape(-1, hidden_size)
446
- if self.wg.weight.dtype == torch.float32:
447
- hidden_states = hidden_states.float()
448
- logits = self.wg(hidden_states)
449
- if self.moe_topk == 1:
450
- gate_output = top1gating(logits, random_routing_dropped_token=self.random_routing_dropped_token)
451
- else:
452
- gate_output = topkgating(logits, self.moe_topk)
453
-
454
- return gate_output
455
-
456
-
457
- class HunYuanMoE(nn.Module):
458
- def __init__(self, config: HunYuanConfig, layer_idx: Optional[int] = None):
459
- super().__init__()
460
- self.config = config
461
- self.layer_idx = layer_idx
462
- self.moe_topk = config.moe_topk
463
- self.num_experts = config.num_experts
464
- if config.use_mixed_mlp_moe:
465
- self.shared_mlp = HunYuanMLP(config, layer_idx=layer_idx, is_shared_mlp=True)
466
- self.gate = HunYuanTopKGate(config, layer_idx=layer_idx)
467
- self.experts = nn.ModuleList(
468
- [HunYuanMLP(config, layer_idx=layer_idx, is_shared_mlp=False) for _ in range(config.num_experts)]
469
- )
470
-
471
- def forward(self, hidden_states):
472
- bsz, seq_len, hidden_size = hidden_states.shape
473
-
474
- if self.config.use_mixed_mlp_moe:
475
- hidden_states_mlp = self.shared_mlp(hidden_states)
476
-
477
- l_moe, combine_weights, dispatch_mask, exp_counts = self.gate(hidden_states)
478
-
479
- reshaped_input = hidden_states.reshape(-1, hidden_size)
480
-
481
- dispatched_input = torch.einsum("sec,sm->ecm", dispatch_mask.type_as(hidden_states), reshaped_input)
482
-
483
- chunks = dispatched_input.chunk(self.num_experts, dim=0)
484
- expert_outputs = []
485
- for chunk, expert in zip(chunks, self.experts):
486
- expert_outputs.append(expert(chunk))
487
-
488
- expert_output = torch.cat(expert_outputs, dim=0)
489
- combined_output = torch.einsum("sec,ecm->sm", combine_weights.type_as(hidden_states), expert_output)
490
- combined_output = combined_output.reshape(bsz, seq_len, hidden_size)
491
-
492
- if self.config.use_mixed_mlp_moe:
493
- output = hidden_states_mlp + combined_output
494
- else:
495
- output = combined_output
496
-
497
- return output
498
-
499
-
500
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
501
- """
502
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
503
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
504
- """
505
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
506
- if n_rep == 1:
507
- return hidden_states
508
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
509
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
510
-
511
-
512
- class HunYuanAttention(nn.Module):
513
- """Multi-headed attention from 'Attention Is All You Need' paper"""
514
-
515
- def __init__(self, config: HunYuanConfig, layer_idx: Optional[int] = None):
516
- super().__init__()
517
- self.config = config
518
- self.layer_idx = layer_idx
519
- # layer_idx 从 0 开始
520
- self.attention_type = 'cross' if config.use_cla and layer_idx % config.cla_share_factor != 0 else 'self'
521
- if layer_idx is None:
522
- logger.warning_once(
523
- f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
524
- "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
525
- "when creating this class."
526
- )
527
-
528
- self.attention_dropout = config.attention_dropout
529
- self.hidden_size = config.hidden_size
530
- self.num_heads = config.num_attention_heads
531
- self.head_dim = self.hidden_size // self.num_heads
532
- self.num_key_value_heads = config.num_key_value_heads
533
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
534
- self.max_position_embeddings = config.max_position_embeddings
535
- self.rope_theta = config.rope_theta
536
- self.is_causal = True
537
- self.use_qk_norm = config.use_qk_norm
538
-
539
- if (self.head_dim * self.num_heads) != self.hidden_size:
540
- raise ValueError(
541
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
542
- f" and `num_heads`: {self.num_heads})."
543
- )
544
-
545
- self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
546
- if self.attention_type == 'self':
547
- self.k_proj = nn.Linear(
548
- self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias
549
- )
550
- self.v_proj = nn.Linear(
551
- self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias
552
- )
553
- self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
554
- if self.use_qk_norm:
555
- self.query_layernorm = HunYuanRMSNorm(self.head_dim, eps=config.rms_norm_eps)
556
- self.key_layernorm = HunYuanRMSNorm(self.head_dim, eps=config.rms_norm_eps)
557
- self._init_rope()
558
-
559
- def _init_rope(self):
560
- if self.config.rope_scaling is None:
561
- self.rotary_emb = HunYuanRotaryEmbedding(
562
- self.head_dim,
563
- max_position_embeddings=self.max_position_embeddings,
564
- base=self.rope_theta,
565
- )
566
- else:
567
- scaling_type = self.config.rope_scaling["type"]
568
- scaling_factor = self.config.rope_scaling["factor"]
569
- scaling_alpha = self.config.rope_scaling["alpha"]
570
- if scaling_type == "linear":
571
- self.rotary_emb = HunYuanLinearScalingRotaryEmbedding(
572
- self.head_dim,
573
- max_position_embeddings=self.max_position_embeddings,
574
- scaling_factor=scaling_factor,
575
- base=self.rope_theta,
576
- )
577
- elif scaling_type == "dynamic":
578
- if scaling_alpha:
579
- self.rotary_emb = HunYuanDynamicNTKAlphaRotaryEmbedding(
580
- self.head_dim,
581
- max_position_embeddings=self.max_position_embeddings,
582
- scaling_alpha=scaling_alpha,
583
- base=self.rope_theta,
584
- )
585
- else:
586
- self.rotary_emb = HunYuanDynamicNTKScalingRotaryEmbedding(
587
- self.head_dim,
588
- max_position_embeddings=self.max_position_embeddings,
589
- scaling_factor=scaling_factor,
590
- base=self.rope_theta,
591
- )
592
- else:
593
- raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
594
-
595
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
596
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
597
-
598
- def forward(
599
- self,
600
- hidden_states: torch.Tensor,
601
- attention_mask: Optional[torch.Tensor] = None,
602
- position_ids: Optional[torch.LongTensor] = None,
603
- past_key_value: Optional[Cache] = None,
604
- output_attentions: bool = False,
605
- use_cache: bool = False,
606
- kv_states: torch.Tensor = None,
607
- **kwargs,
608
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
609
- if "padding_mask" in kwargs:
610
- warnings.warn(
611
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use "
612
- "`attention_mask` instead.`"
613
- )
614
-
615
- bsz, q_len, _ = hidden_states.size()
616
-
617
- if self.config.pretraining_tp > 1:
618
- query_slices = self.q_proj.weight.split(
619
- (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
620
- )
621
- query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
622
- query_states = torch.cat(query_states, dim=-1)
623
-
624
- if self.attention_type == "cross" and kv_states is not None and isinstance(kv_states, tuple):
625
- orig_key_states, orig_value_states = kv_states
626
- key_states, value_states = kv_states
627
- else:
628
- key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
629
- key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
630
- value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
631
-
632
- key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
633
- key_states = torch.cat(key_states, dim=-1)
634
-
635
- value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
636
- value_states = torch.cat(value_states, dim=-1)
637
- orig_key_states, orig_value_states = key_states, value_states
638
-
639
- else:
640
- query_states = self.q_proj(hidden_states)
641
- if self.attention_type == "cross" and kv_states is not None and isinstance(kv_states, tuple):
642
- orig_key_states, orig_value_states = kv_states
643
- key_states, value_states = kv_states
644
- else:
645
- key_states = self.k_proj(hidden_states)
646
- value_states = self.v_proj(hidden_states)
647
- orig_key_states, orig_value_states = key_states, value_states
648
-
649
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
650
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
651
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
652
-
653
- kv_seq_len = key_states.shape[-2]
654
- if past_key_value is not None:
655
- if self.layer_idx is None:
656
- raise ValueError(
657
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
658
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
659
- "with a layer index."
660
- )
661
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
662
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
663
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
664
-
665
- if self.use_qk_norm:
666
- query_states = self.query_layernorm(query_states)
667
- key_states = self.key_layernorm(key_states)
668
-
669
- if past_key_value is not None:
670
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
671
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
672
-
673
- key_states = repeat_kv(key_states, self.num_key_value_groups)
674
- value_states = repeat_kv(value_states, self.num_key_value_groups)
675
-
676
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
677
-
678
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
679
- raise ValueError(
680
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
681
- f" {attn_weights.size()}"
682
- )
683
-
684
- if attention_mask is not None:
685
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
686
- raise ValueError(
687
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
688
- )
689
- attn_weights = attn_weights + attention_mask
690
-
691
- # upcast attention to fp32
692
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
693
- attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
694
- attn_output = torch.matmul(attn_weights, value_states)
695
-
696
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
697
- raise ValueError(
698
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
699
- f" {attn_output.size()}"
700
- )
701
-
702
- attn_output = attn_output.transpose(1, 2).contiguous()
703
-
704
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
705
-
706
- if self.config.pretraining_tp > 1:
707
- attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
708
- o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
709
- attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
710
- else:
711
- attn_output = self.o_proj(attn_output)
712
-
713
- if not output_attentions:
714
- attn_weights = None
715
-
716
- return attn_output, attn_weights, past_key_value, (orig_key_states, orig_value_states)
717
-
718
-
719
- class HunYuanFlashAttention2(HunYuanAttention):
720
- """
721
- HunYuan flash attention module. This module inherits from `HunYuanAttention` as the weights of the module stays
722
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
723
- flash attention and deal with padding tokens in case the input contains any of them.
724
- """
725
-
726
- def __init__(self, *args, **kwargs):
727
- super().__init__(*args, **kwargs)
728
-
729
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
730
-
731
- def forward(
732
- self,
733
- hidden_states: torch.Tensor,
734
- attention_mask: Optional[torch.LongTensor] = None,
735
- position_ids: Optional[torch.LongTensor] = None,
736
- past_key_value: Optional[Cache] = None,
737
- output_attentions: bool = False,
738
- use_cache: bool = False,
739
- kv_states: torch.Tensor = None,
740
- **kwargs,
741
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
742
- # HunYuanFlashAttention2 attention does not support output_attentions
743
- if "padding_mask" in kwargs:
744
- warnings.warn(
745
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use "
746
- "`attention_mask` instead.`"
747
- )
748
-
749
- # overwrite attention_mask with padding_mask
750
- attention_mask = kwargs.pop("padding_mask")
751
-
752
- bsz, q_len, _ = hidden_states.size()
753
-
754
- query_states = self.q_proj(hidden_states)
755
- if self.attention_type == "cross" and kv_states is not None and isinstance(kv_states, tuple):
756
- orig_key_states, orig_value_states = kv_states
757
- key_states, value_states = kv_states
758
- else:
759
- key_states = self.k_proj(hidden_states)
760
- value_states = self.v_proj(hidden_states)
761
- orig_key_states, orig_value_states = key_states, value_states
762
-
763
- # Flash attention requires the input to have the shape
764
- # batch_size x seq_length x head_dim x hidden_dim
765
- # therefore we just need to keep the original shape
766
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
767
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
768
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
769
-
770
- kv_seq_len = key_states.shape[-2]
771
- if past_key_value is not None:
772
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
773
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
774
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
775
-
776
- if self.use_qk_norm:
777
- query_states = self.query_layernorm(query_states)
778
- key_states = self.key_layernorm(key_states)
779
-
780
- if past_key_value is not None:
781
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
782
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
783
-
784
- query_states = query_states.transpose(1, 2)
785
- key_states = key_states.transpose(1, 2)
786
- value_states = value_states.transpose(1, 2)
787
-
788
- dropout_rate = self.attention_dropout if self.training else 0.0
789
-
790
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
791
- # therefore the input hidden states gets silently casted in float32. Hence, we need
792
- # cast them back in the correct dtype just to be sure everything works as expected.
793
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
794
- # in fp32. (HunYuanRMSNorm handles it correctly)
795
-
796
- input_dtype = query_states.dtype
797
- if input_dtype == torch.float32:
798
- # Handle the case where the model is quantized
799
- if hasattr(self.config, "_pre_quantization_dtype"):
800
- target_dtype = self.config._pre_quantization_dtype
801
- else:
802
- target_dtype = self.q_proj.weight.dtype
803
-
804
- logger.warning_once(
805
- f"The input hidden states seems to be silently casted in float32, this might be related to"
806
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
807
- f" {target_dtype}."
808
- )
809
-
810
- query_states = query_states.to(target_dtype)
811
- key_states = key_states.to(target_dtype)
812
- value_states = value_states.to(target_dtype)
813
-
814
- attn_output = self._flash_attention_forward(
815
- query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
816
- )
817
-
818
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
819
- attn_output = self.o_proj(attn_output)
820
-
821
- return attn_output, None, past_key_value, (orig_key_states, orig_value_states)
822
-
823
- def _flash_attention_forward(
824
- self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
825
- ):
826
- """
827
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
828
- first unpad the input, then computes the attention scores and pad the final attention scores.
829
-
830
- Args:
831
- query_states (`torch.Tensor`):
832
- Input query states to be passed to Flash Attention API
833
- key_states (`torch.Tensor`):
834
- Input key states to be passed to Flash Attention API
835
- value_states (`torch.Tensor`):
836
- Input value states to be passed to Flash Attention API
837
- attention_mask (`torch.Tensor`):
838
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
839
- position of padding tokens and 1 for the position of non-padding tokens.
840
- dropout (`int`, *optional*):
841
- Attention dropout
842
- softmax_scale (`float`, *optional*):
843
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
844
- """
845
- if not self._flash_attn_uses_top_left_mask:
846
- causal = self.is_causal
847
- else:
848
- causal = self.is_causal and query_length != 1
849
-
850
- # Contains at least one padding token in the sequence
851
- if attention_mask is not None:
852
- batch_size = query_states.shape[0]
853
- query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
854
- query_states, key_states, value_states, attention_mask, query_length
855
- )
856
-
857
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
858
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
859
-
860
- attn_output_unpad = flash_attn_varlen_func(
861
- query_states,
862
- key_states,
863
- value_states,
864
- cu_seqlens_q=cu_seqlens_q,
865
- cu_seqlens_k=cu_seqlens_k,
866
- max_seqlen_q=max_seqlen_in_batch_q,
867
- max_seqlen_k=max_seqlen_in_batch_k,
868
- dropout_p=dropout,
869
- softmax_scale=softmax_scale,
870
- causal=causal,
871
- )
872
-
873
- attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
874
- else:
875
- attn_output = flash_attn_func(
876
- query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
877
- )
878
-
879
- return attn_output
880
-
881
- def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
882
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
883
- batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
884
-
885
- key_layer = index_first_axis(
886
- key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
887
- )
888
- value_layer = index_first_axis(
889
- value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
890
- )
891
- if query_length == kv_seq_len:
892
- query_layer = index_first_axis(
893
- query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
894
- )
895
- cu_seqlens_q = cu_seqlens_k
896
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
897
- indices_q = indices_k
898
- elif query_length == 1:
899
- max_seqlen_in_batch_q = 1
900
- cu_seqlens_q = torch.arange(
901
- batch_size + 1, dtype=torch.int32, device=query_layer.device
902
- ) # There is a memcpy here, that is very bad.
903
- indices_q = cu_seqlens_q[:-1]
904
- query_layer = query_layer.squeeze(1)
905
- else:
906
- # The -q_len: slice assumes left padding.
907
- attention_mask = attention_mask[:, -query_length:]
908
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
909
-
910
- return (
911
- query_layer,
912
- key_layer,
913
- value_layer,
914
- indices_q,
915
- (cu_seqlens_q, cu_seqlens_k),
916
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
917
- )
918
-
919
-
920
- class HunYuanSdpaAttention(HunYuanAttention):
921
- """
922
- HunYuan attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
923
- `HunYuanAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt
924
- to SDPA API.
925
- """
926
-
927
- # Adapted from HunYuanAttention.forward
928
- def forward(
929
- self,
930
- hidden_states: torch.Tensor,
931
- attention_mask: Optional[torch.Tensor] = None,
932
- position_ids: Optional[torch.LongTensor] = None,
933
- past_key_value: Optional[Cache] = None,
934
- output_attentions: bool = False,
935
- use_cache: bool = False,
936
- kv_states: torch.Tensor = None,
937
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
938
- if output_attentions:
939
- logger.warning_once(
940
- 'HunYuanModel is using HunYuanSdpaAttention,'
941
- 'but `torch.nn.functional.scaled_dot_product_attention`'
942
- 'does not support `output_attentions=True`. Falling back to the manual attention implementation, '
943
- 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. '
944
- 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
945
- )
946
- return super().forward(
947
- hidden_states=hidden_states,
948
- attention_mask=attention_mask,
949
- position_ids=position_ids,
950
- past_key_value=past_key_value,
951
- output_attentions=output_attentions,
952
- use_cache=use_cache,
953
- )
954
-
955
- bsz, q_len, _ = hidden_states.size()
956
-
957
- query_states = self.q_proj(hidden_states)
958
- if self.attention_type == "cross" and kv_states is not None and isinstance(kv_states, tuple):
959
- orig_key_states, orig_value_states = kv_states
960
- key_states, value_states = kv_states
961
- else:
962
- key_states = self.k_proj(hidden_states)
963
- value_states = self.v_proj(hidden_states)
964
- orig_key_states, orig_value_states = key_states, value_states
965
-
966
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
967
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
968
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
969
-
970
- kv_seq_len = key_states.shape[-2]
971
- if past_key_value is not None:
972
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
973
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
974
-
975
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
976
-
977
- if self.use_qk_norm:
978
- query_states = self.query_layernorm(query_states)
979
- key_states = self.key_layernorm(key_states)
980
-
981
- if past_key_value is not None:
982
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
983
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
984
-
985
- key_states = repeat_kv(key_states, self.num_key_value_groups)
986
- value_states = repeat_kv(value_states, self.num_key_value_groups)
987
-
988
- if attention_mask is not None:
989
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
990
- raise ValueError(
991
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
992
- )
993
-
994
- # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with
995
- # custom attn_mask,
996
- # Reference: https://github.com/pytorch/pytorch/issues/112577.
997
- if query_states.device.type == "cuda" and attention_mask is not None:
998
- query_states = query_states.contiguous()
999
- key_states = key_states.contiguous()
1000
- value_states = value_states.contiguous()
1001
-
1002
- attn_output = torch.nn.functional.scaled_dot_product_attention(
1003
- query_states,
1004
- key_states,
1005
- value_states,
1006
- attn_mask=attention_mask,
1007
- dropout_p=self.attention_dropout if self.training else 0.0,
1008
- # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a
1009
- # causal mask in case q_len == 1.
1010
- is_causal=self.is_causal and attention_mask is None and q_len > 1,
1011
- )
1012
-
1013
- attn_output = attn_output.transpose(1, 2).contiguous()
1014
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
1015
-
1016
- attn_output = self.o_proj(attn_output)
1017
-
1018
- return attn_output, None, past_key_value, (orig_key_states, orig_value_states)
1019
-
1020
-
1021
- HUNYUAN_ATTENTION_CLASSES = {
1022
- "eager": HunYuanAttention,
1023
- "flash_attention_2": HunYuanFlashAttention2,
1024
- "sdpa": HunYuanSdpaAttention,
1025
- }
1026
-
1027
-
1028
- class HunYuanDecoderLayer(nn.Module):
1029
- def __init__(self, config: HunYuanConfig, layer_idx: int):
1030
- super().__init__()
1031
- self.hidden_size = config.hidden_size
1032
- self.layer_idx = layer_idx
1033
-
1034
- self.self_attn = HUNYUAN_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
1035
-
1036
- if config.num_experts > 1:
1037
- self.mlp = HunYuanMoE(config, layer_idx=layer_idx)
1038
- else:
1039
- self.mlp = HunYuanMLP(config, layer_idx=layer_idx, is_shared_mlp=False)
1040
- self.input_layernorm = HunYuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1041
- self.post_attention_layernorm = HunYuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1042
-
1043
- def forward(
1044
- self,
1045
- hidden_states: torch.Tensor,
1046
- attention_mask: Optional[torch.Tensor] = None,
1047
- position_ids: Optional[torch.LongTensor] = None,
1048
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
1049
- output_attentions: Optional[bool] = False,
1050
- use_cache: Optional[bool] = False,
1051
- kv_states: Optional[Tuple[torch.Tensor]] = None,
1052
- **kwargs,
1053
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
1054
- """
1055
- Args:
1056
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1057
- attention_mask (`torch.FloatTensor`, *optional*):
1058
- attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1059
- query_sequence_length, key_sequence_length)` if default attention is used.
1060
- output_attentions (`bool`, *optional*):
1061
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1062
- returned tensors for more detail.
1063
- use_cache (`bool`, *optional*):
1064
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1065
- (see `past_key_values`).
1066
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1067
- kv_states (`Tuple(torch.FloatTensor)`, *optional*): Used when CLA is enabled,
1068
- key and value states from past attention blocks
1069
- """
1070
- if "padding_mask" in kwargs:
1071
- warnings.warn(
1072
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use "
1073
- "`attention_mask` instead.`"
1074
- )
1075
-
1076
- residual = hidden_states
1077
-
1078
- hidden_states = self.input_layernorm(hidden_states)
1079
-
1080
- # Self Attention
1081
- hidden_states, self_attn_weights, present_key_value, kv_states = self.self_attn(
1082
- hidden_states=hidden_states,
1083
- attention_mask=attention_mask,
1084
- position_ids=position_ids,
1085
- past_key_value=past_key_value,
1086
- output_attentions=output_attentions,
1087
- use_cache=use_cache,
1088
- kv_states=kv_states,
1089
- **kwargs,
1090
- )
1091
- hidden_states = residual + hidden_states
1092
-
1093
- # Fully Connected
1094
- residual = hidden_states
1095
- hidden_states = self.post_attention_layernorm(hidden_states)
1096
- hidden_states = self.mlp(hidden_states)
1097
- hidden_states = residual + hidden_states
1098
-
1099
- outputs = (hidden_states,)
1100
-
1101
- if output_attentions:
1102
- outputs += (self_attn_weights,)
1103
-
1104
- if use_cache:
1105
- outputs += (present_key_value,)
1106
-
1107
- outputs += (kv_states,)
1108
-
1109
- return outputs
1110
-
1111
-
1112
- HUNYUAN_START_DOCSTRING = r"""
1113
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1114
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1115
- etc.)
1116
-
1117
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1118
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1119
- and behavior.
1120
-
1121
- Parameters:
1122
- config ([`HunYuanConfig`]):
1123
- Model configuration class with all the parameters of the model. Initializing with a config file does not
1124
- load the weights associated with the model, only the configuration. Check out the
1125
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1126
- """
1127
-
1128
-
1129
- @add_start_docstrings(
1130
- "The bare HunYuan Model outputting raw hidden-states without any specific head on top.",
1131
- HUNYUAN_START_DOCSTRING,
1132
- )
1133
- class HunYuanPreTrainedModel(PreTrainedModel):
1134
- config_class = HunYuanConfig
1135
- base_model_prefix = "model"
1136
- supports_gradient_checkpointing = True
1137
- _no_split_modules = ["HunYuanDecoderLayer"]
1138
- _skip_keys_device_placement = "past_key_values"
1139
- _supports_flash_attn_2 = True
1140
- _supports_sdpa = True
1141
- _supports_cache_class = True
1142
-
1143
- def _init_weights(self, module):
1144
- std = self.config.initializer_range
1145
- if isinstance(module, nn.Linear):
1146
- module.weight.data.normal_(mean=0.0, std=std)
1147
- if module.bias is not None:
1148
- module.bias.data.zero_()
1149
- elif isinstance(module, nn.Embedding):
1150
- module.weight.data.normal_(mean=0.0, std=std)
1151
- if module.padding_idx is not None:
1152
- module.weight.data[module.padding_idx].zero_()
1153
-
1154
-
1155
- HUNYUAN_INPUTS_DOCSTRING = r"""
1156
- Args:
1157
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1158
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1159
- it.
1160
-
1161
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1162
- [`PreTrainedTokenizer.__call__`] for details.
1163
-
1164
- [What are input IDs?](../glossary#input-ids)
1165
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1166
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1167
-
1168
- - 1 for tokens that are **not masked**,
1169
- - 0 for tokens that are **masked**.
1170
-
1171
- [What are attention masks?](../glossary#attention-mask)
1172
-
1173
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1174
- [`PreTrainedTokenizer.__call__`] for details.
1175
-
1176
- If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1177
- `past_key_values`).
1178
-
1179
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1180
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1181
- information on the default strategy.
1182
-
1183
- - 1 indicates the head is **not masked**,
1184
- - 0 indicates the head is **masked**.
1185
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1186
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1187
- config.n_positions - 1]`.
1188
-
1189
- [What are position IDs?](../glossary#position-ids)
1190
- past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1191
- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1192
- blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1193
- returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1194
-
1195
- Two formats are allowed:
1196
- - a [`~cache_utils.Cache`] instance;
1197
- - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1198
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1199
- cache format.
1200
-
1201
- The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1202
- legacy cache format will be returned.
1203
-
1204
- If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1205
- have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1206
- of shape `(batch_size, sequence_length)`.
1207
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1208
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1209
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1210
- model's internal embedding lookup matrix.
1211
- use_cache (`bool`, *optional*):
1212
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1213
- `past_key_values`).
1214
- output_attentions (`bool`, *optional*):
1215
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1216
- tensors for more detail.
1217
- output_hidden_states (`bool`, *optional*):
1218
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1219
- more detail.
1220
- return_dict (`bool`, *optional*):
1221
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1222
- """
1223
-
1224
-
1225
- @add_start_docstrings(
1226
- "The bare HunYuan Model outputting raw hidden-states without any specific head on top.",
1227
- HUNYUAN_START_DOCSTRING,
1228
- )
1229
- class HunYuanModel(HunYuanPreTrainedModel):
1230
- """
1231
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`HunYuanDecoderLayer`]
1232
-
1233
- Args:
1234
- config: HunYuanConfig
1235
- """
1236
-
1237
- def __init__(self, config: HunYuanConfig):
1238
- super().__init__(config)
1239
- self.padding_idx = config.pad_token_id
1240
- self.vocab_size = config.vocab_size
1241
-
1242
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1243
- self.layers = nn.ModuleList(
1244
- [HunYuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1245
- )
1246
- self._use_sdpa = config._attn_implementation == "sdpa"
1247
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1248
- self.norm = HunYuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1249
-
1250
- self.cla = config.use_cla
1251
- self.cla_share_factor = config.cla_share_factor
1252
-
1253
- self.gradient_checkpointing = False
1254
- # Initialize weights and apply final processing
1255
- self.post_init()
1256
-
1257
- def get_input_embeddings(self):
1258
- return self.embed_tokens
1259
-
1260
- def set_input_embeddings(self, value):
1261
- self.embed_tokens = value
1262
-
1263
- @add_start_docstrings_to_model_forward(HUNYUAN_INPUTS_DOCSTRING)
1264
- def forward(
1265
- self,
1266
- input_ids: torch.LongTensor = None,
1267
- attention_mask: Optional[torch.Tensor] = None,
1268
- position_ids: Optional[torch.LongTensor] = None,
1269
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1270
- inputs_embeds: Optional[torch.FloatTensor] = None,
1271
- use_cache: Optional[bool] = None,
1272
- output_attentions: Optional[bool] = None,
1273
- output_hidden_states: Optional[bool] = None,
1274
- return_dict: Optional[bool] = None,
1275
- ) -> Union[Tuple, BaseModelOutputWithPast]:
1276
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1277
- output_hidden_states = (
1278
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1279
- )
1280
- use_cache = use_cache if use_cache is not None else self.config.use_cache
1281
-
1282
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1283
-
1284
- # retrieve input_ids and inputs_embeds
1285
- if input_ids is not None and inputs_embeds is not None:
1286
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1287
- elif input_ids is not None:
1288
- batch_size, seq_length = input_ids.shape[:2]
1289
- elif inputs_embeds is not None:
1290
- batch_size, seq_length = inputs_embeds.shape[:2]
1291
- else:
1292
- raise ValueError("You have to specify either input_ids or inputs_embeds")
1293
-
1294
- if self.gradient_checkpointing and self.training:
1295
- if use_cache:
1296
- logger.warning_once(
1297
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1298
- )
1299
- use_cache = False
1300
-
1301
- past_key_values_length = 0
1302
- if use_cache:
1303
- use_legacy_cache = not isinstance(past_key_values, Cache)
1304
- if use_legacy_cache:
1305
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1306
- past_key_values_length = past_key_values.get_usable_length(seq_length)
1307
-
1308
- if position_ids is None:
1309
- device = input_ids.device if input_ids is not None else inputs_embeds.device
1310
- position_ids = torch.arange(
1311
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1312
- )
1313
- position_ids = position_ids.unsqueeze(0)
1314
-
1315
- if inputs_embeds is None:
1316
- inputs_embeds = self.embed_tokens(input_ids)
1317
-
1318
- # Fix lora with gradient checkpointing training
1319
- if self.training and inputs_embeds.is_leaf:
1320
- inputs_embeds.requires_grad = True
1321
-
1322
- if self._use_flash_attention_2:
1323
- # 2d mask is passed through the layers
1324
- attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1325
- elif self._use_sdpa and not output_attentions:
1326
- # output_attentions=True can not be supported when using SDPA, and we fall back on
1327
- # the manual implementation that requires a 4D causal mask in all cases.
1328
- attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1329
- attention_mask,
1330
- (batch_size, seq_length),
1331
- inputs_embeds,
1332
- past_key_values_length,
1333
- )
1334
- else:
1335
- # 4d mask is passed through the layers
1336
- attention_mask = _prepare_4d_causal_attention_mask(
1337
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1338
- )
1339
-
1340
- # embed positions
1341
- hidden_states = inputs_embeds
1342
-
1343
- # decoder layers
1344
- all_hidden_states = () if output_hidden_states else None
1345
- all_self_attns = () if output_attentions else None
1346
- next_decoder_cache = None
1347
-
1348
- prev_kv_states = None
1349
- for layer_idx, decoder_layer in enumerate(self.layers):
1350
- if output_hidden_states:
1351
- all_hidden_states += (hidden_states,)
1352
-
1353
- if self.gradient_checkpointing and self.training:
1354
- layer_outputs = self._gradient_checkpointing_func(
1355
- decoder_layer.__call__,
1356
- hidden_states,
1357
- attention_mask,
1358
- position_ids,
1359
- past_key_values,
1360
- output_attentions,
1361
- use_cache,
1362
- prev_kv_states,
1363
- )
1364
- else:
1365
- layer_outputs = decoder_layer(
1366
- hidden_states,
1367
- attention_mask=attention_mask,
1368
- position_ids=position_ids,
1369
- past_key_value=past_key_values,
1370
- output_attentions=output_attentions,
1371
- use_cache=use_cache,
1372
- kv_states=prev_kv_states
1373
- )
1374
-
1375
- hidden_states = layer_outputs[0]
1376
-
1377
- if use_cache:
1378
- next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1379
-
1380
- if output_attentions:
1381
- all_self_attns += (layer_outputs[1],)
1382
-
1383
- kv_states = layer_outputs[-1]
1384
-
1385
- if self.cla and layer_idx % self.cla_share_factor == 0:
1386
- prev_kv_states = kv_states
1387
-
1388
- hidden_states = self.norm(hidden_states)
1389
-
1390
- # add hidden states from the last decoder layer
1391
- if output_hidden_states:
1392
- all_hidden_states += (hidden_states,)
1393
-
1394
- next_cache = None
1395
- if use_cache:
1396
- next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1397
- if not return_dict:
1398
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1399
- return BaseModelOutputWithPast(
1400
- last_hidden_state=hidden_states,
1401
- past_key_values=next_cache,
1402
- hidden_states=all_hidden_states,
1403
- attentions=all_self_attns,
1404
- )
1405
-
1406
-
1407
- class HunYuanForCausalLM(HunYuanPreTrainedModel):
1408
- _tied_weights_keys = ["lm_head.weight"]
1409
-
1410
- def __init__(self, config: HunYuanConfig):
1411
- super().__init__(config)
1412
- self.model = HunYuanModel(config)
1413
- self.vocab_size = config.vocab_size
1414
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1415
-
1416
- # Initialize weights and apply final processing
1417
- self.post_init()
1418
-
1419
- def get_input_embeddings(self):
1420
- return self.model.embed_tokens
1421
-
1422
- def set_input_embeddings(self, value):
1423
- self.model.embed_tokens = value
1424
-
1425
- def get_output_embeddings(self):
1426
- return self.lm_head
1427
-
1428
- def set_output_embeddings(self, new_embeddings):
1429
- self.lm_head = new_embeddings
1430
-
1431
- def set_decoder(self, decoder):
1432
- self.model = decoder
1433
-
1434
- def get_decoder(self):
1435
- return self.model
1436
-
1437
- @add_start_docstrings_to_model_forward(HUNYUAN_INPUTS_DOCSTRING)
1438
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1439
- def forward(
1440
- self,
1441
- input_ids: torch.LongTensor = None,
1442
- attention_mask: Optional[torch.Tensor] = None,
1443
- position_ids: Optional[torch.LongTensor] = None,
1444
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1445
- inputs_embeds: Optional[torch.FloatTensor] = None,
1446
- labels: Optional[torch.LongTensor] = None,
1447
- use_cache: Optional[bool] = None,
1448
- output_attentions: Optional[bool] = None,
1449
- output_hidden_states: Optional[bool] = None,
1450
- return_dict: Optional[bool] = None,
1451
- ) -> Union[Tuple, CausalLMOutputWithPast]:
1452
- r"""
1453
- Args:
1454
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1455
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1456
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1457
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1458
-
1459
- Returns:
1460
-
1461
- Example:
1462
-
1463
- ```python
1464
- >>> from transformers import AutoTokenizer, AutoModelForCausalLM
1465
-
1466
- >>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1467
- >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1468
-
1469
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
1470
- >>> inputs = tokenizer(prompt, return_tensors="pt")
1471
-
1472
- >>> # Generate
1473
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1474
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1475
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1476
- ```"""
1477
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1478
- output_hidden_states = (
1479
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1480
- )
1481
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1482
-
1483
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1484
- outputs = self.model(
1485
- input_ids=input_ids,
1486
- attention_mask=attention_mask,
1487
- position_ids=position_ids,
1488
- past_key_values=past_key_values,
1489
- inputs_embeds=inputs_embeds,
1490
- use_cache=use_cache,
1491
- output_attentions=output_attentions,
1492
- output_hidden_states=output_hidden_states,
1493
- return_dict=return_dict,
1494
- )
1495
-
1496
- hidden_states = outputs[0]
1497
- if self.config.pretraining_tp > 1:
1498
- lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1499
- logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1500
- logits = torch.cat(logits, dim=-1)
1501
- else:
1502
- logits = self.lm_head(hidden_states)
1503
- logits = logits.float()
1504
-
1505
- loss = None
1506
- if labels is not None:
1507
- # Shift so that tokens < n predict n
1508
- shift_logits = logits[..., :-1, :].contiguous()
1509
- shift_labels = labels[..., 1:].contiguous()
1510
- # Flatten the tokens
1511
- loss_fct = CrossEntropyLoss()
1512
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
1513
- shift_labels = shift_labels.view(-1)
1514
- # Enable model parallelism
1515
- shift_labels = shift_labels.to(shift_logits.device)
1516
- loss = loss_fct(shift_logits, shift_labels)
1517
-
1518
- if not return_dict:
1519
- output = (logits,) + outputs[1:]
1520
- return (loss,) + output if loss is not None else output
1521
-
1522
- return CausalLMOutputWithPast(
1523
- loss=loss,
1524
- logits=logits,
1525
- past_key_values=outputs.past_key_values,
1526
- hidden_states=outputs.hidden_states,
1527
- attentions=outputs.attentions,
1528
- )
1529
-
1530
- def prepare_inputs_for_generation(
1531
- self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1532
- ):
1533
- if past_key_values is not None:
1534
- if isinstance(past_key_values, Cache):
1535
- cache_length = past_key_values.get_seq_length()
1536
- past_length = past_key_values.seen_tokens
1537
- max_cache_length = past_key_values.get_max_length()
1538
- else:
1539
- cache_length = past_length = past_key_values[0][0].shape[2]
1540
- max_cache_length = None
1541
-
1542
- # Keep only the unprocessed tokens:
1543
- # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1544
- # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1545
- # input)
1546
- if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1547
- input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
1548
- # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1549
- # input_ids based on the past_length.
1550
- elif past_length < input_ids.shape[1]:
1551
- input_ids = input_ids[:, past_length:]
1552
- # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1553
-
1554
- # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1555
- if (
1556
- max_cache_length is not None
1557
- and attention_mask is not None
1558
- and cache_length + input_ids.shape[1] > max_cache_length
1559
- ):
1560
- attention_mask = attention_mask[:, -max_cache_length:]
1561
-
1562
- position_ids = kwargs.get("position_ids", None)
1563
- if attention_mask is not None and position_ids is None:
1564
- # create position_ids on the fly for batch generation
1565
- position_ids = attention_mask.long().cumsum(-1) - 1
1566
- position_ids.masked_fill_(attention_mask == 0, 1)
1567
- if past_key_values:
1568
- position_ids = position_ids[:, -input_ids.shape[1]:]
1569
-
1570
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1571
- if inputs_embeds is not None and past_key_values is None:
1572
- model_inputs = {"inputs_embeds": inputs_embeds}
1573
- else:
1574
- model_inputs = {"input_ids": input_ids}
1575
-
1576
- model_inputs.update(
1577
- {
1578
- "position_ids": position_ids,
1579
- "past_key_values": past_key_values,
1580
- "use_cache": kwargs.get("use_cache"),
1581
- "attention_mask": attention_mask,
1582
- }
1583
- )
1584
- return model_inputs
1585
-
1586
- @staticmethod
1587
- def _reorder_cache(past_key_values, beam_idx):
1588
- reordered_past = ()
1589
- for layer_past in past_key_values:
1590
- reordered_past += (
1591
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1592
- )
1593
- return reordered_past
1594
-
1595
-
1596
- @add_start_docstrings(
1597
- """
1598
- The HunYuan Model transformer with a sequence classification head on top (linear layer).
1599
-
1600
- [`HunYuanForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1601
- (e.g. GPT-2) do.
1602
-
1603
- Since it does classification on the last token, it requires to know the position of the last token. If a
1604
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1605
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1606
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1607
- each row of the batch).
1608
- """,
1609
- HUNYUAN_START_DOCSTRING,
1610
- )
1611
- class HunYuanForSequenceClassification(HunYuanPreTrainedModel):
1612
- def __init__(self, config):
1613
- super().__init__(config)
1614
- self.num_labels = config.num_labels
1615
- self.model = HunYuanModel(config)
1616
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1617
-
1618
- # Initialize weights and apply final processing
1619
- self.post_init()
1620
-
1621
- def get_input_embeddings(self):
1622
- return self.model.embed_tokens
1623
-
1624
- def set_input_embeddings(self, value):
1625
- self.model.embed_tokens = value
1626
-
1627
- @add_start_docstrings_to_model_forward(HUNYUAN_INPUTS_DOCSTRING)
1628
- def forward(
1629
- self,
1630
- input_ids: torch.LongTensor = None,
1631
- attention_mask: Optional[torch.Tensor] = None,
1632
- position_ids: Optional[torch.LongTensor] = None,
1633
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1634
- inputs_embeds: Optional[torch.FloatTensor] = None,
1635
- labels: Optional[torch.LongTensor] = None,
1636
- use_cache: Optional[bool] = None,
1637
- output_attentions: Optional[bool] = None,
1638
- output_hidden_states: Optional[bool] = None,
1639
- return_dict: Optional[bool] = None,
1640
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1641
- r"""
1642
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1643
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1644
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1645
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1646
- """
1647
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1648
-
1649
- transformer_outputs = self.model(
1650
- input_ids,
1651
- attention_mask=attention_mask,
1652
- position_ids=position_ids,
1653
- past_key_values=past_key_values,
1654
- inputs_embeds=inputs_embeds,
1655
- use_cache=use_cache,
1656
- output_attentions=output_attentions,
1657
- output_hidden_states=output_hidden_states,
1658
- return_dict=return_dict,
1659
- )
1660
- hidden_states = transformer_outputs[0]
1661
- logits = self.score(hidden_states)
1662
-
1663
- if input_ids is not None:
1664
- batch_size = input_ids.shape[0]
1665
- else:
1666
- batch_size = inputs_embeds.shape[0]
1667
-
1668
- if self.config.pad_token_id is None and batch_size != 1:
1669
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1670
- if self.config.pad_token_id is None:
1671
- sequence_lengths = -1
1672
- else:
1673
- if input_ids is not None:
1674
- sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1675
- logits.device
1676
- )
1677
- else:
1678
- sequence_lengths = -1
1679
-
1680
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1681
-
1682
- loss = None
1683
- if labels is not None:
1684
- labels = labels.to(logits.device)
1685
- if self.config.problem_type is None:
1686
- if self.num_labels == 1:
1687
- self.config.problem_type = "regression"
1688
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1689
- self.config.problem_type = "single_label_classification"
1690
- else:
1691
- self.config.problem_type = "multi_label_classification"
1692
-
1693
- if self.config.problem_type == "regression":
1694
- loss_fct = MSELoss()
1695
- if self.num_labels == 1:
1696
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1697
- else:
1698
- loss = loss_fct(pooled_logits, labels)
1699
- elif self.config.problem_type == "single_label_classification":
1700
- loss_fct = CrossEntropyLoss()
1701
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1702
- elif self.config.problem_type == "multi_label_classification":
1703
- loss_fct = BCEWithLogitsLoss()
1704
- loss = loss_fct(pooled_logits, labels)
1705
- if not return_dict:
1706
- output = (pooled_logits,) + transformer_outputs[1:]
1707
- return ((loss,) + output) if loss is not None else output
1708
-
1709
- return SequenceClassifierOutputWithPast(
1710
- loss=loss,
1711
- logits=pooled_logits,
1712
- past_key_values=transformer_outputs.past_key_values,
1713
- hidden_states=transformer_outputs.hidden_states,
1714
- attentions=transformer_outputs.attentions,
1715
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00001-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1dc37634e1930d3963535d0523cbde0931d525e02b64236c4530636ec9ffe462
3
- size 9986983328
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00002-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e7f84a7d2b2e83f5dc870fe552e1cea957098dafa369ddbb48fa46c9b7dbdbfb
3
- size 9795604562
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00003-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:77df873923eca055614f350e743ac306787c7124670861544e045f0aeb3fee75
3
- size 9841638578
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00004-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:da2c940c518e6df50bd6e7fdd8eccb2a6b16f2c1c54d8bf8a2e07b7fd00c92ff
3
- size 9841638578
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00005-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5f38ab3eb61069daf554e65c1f3c8e7fe94b3d2239c4bd1d8c1776b8ed5d2b4e
3
- size 9841638578
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00006-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c7e0281e28338c2ff2e932eb922d49a61fb94a412b9c76b7f69a72c389a84ef
3
- size 9840245586
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00007-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a80abb7484aa22de026bbd6ae71e9844cac6b6479811d33bb3e9dfefcf28d046
3
- size 9841638038
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00008-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1a17737adc5f5a050042fcb41a286bdfa1588dd01202f589b6424d300802c453
3
- size 9841638014
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00009-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:823505c864ad5ca1bd092edecfae7e68c7e8d151a00bc4eac7fe537318fe722a
3
- size 9841638002
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00010-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:58ca1562400bf4e4694dc75fe06b93b6bc312996b44c7364c2570412e25c4b92
3
- size 9841638002
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00011-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d1a31c8de2af3903bc35845a321c444ccec248d03b6b4a30b69e69a737c253dc
3
- size 9841638578
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00012-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9ec068b1e2d1ec16e58c4fb138e07a9636daa6e53678daf5e9a0e417942f4a2c
3
- size 9841638578
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00013-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:15a892ef2f91e3593bb9fc1e62619f8a1c39bf25142304bfce89f583cad78138
3
- size 9841638578
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00014-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:720c59aad36342abd7a2d4120b27796cb0ce81d40b1042f84ee6c482964bf26b
3
- size 9840245650
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00015-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5988b51d791d6449e1cb076333726196984d8ce15a0c5aaf38a1b1feadc1e7f
3
- size 9841638102
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00016-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:54189fab48ac121ddcb3bc743f3e58868f9cde784dd35829ac71d128702690c6
3
- size 9841638078
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00017-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1413c9aeb730b6651d8e07e66b29f18a5705cad143a08dbc0eeabdfcc89803f2
3
- size 9841638066
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00018-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:21534e10706dd1674d716e1d2c727a62341bd24fb71bb7863afb849a35dbcb45
3
- size 9841638066
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00019-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e89ad4534f00c5b80057e0b7f5c09dc5c3250c76277f7c70753254b41e647da5
3
- size 9841638642
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00020-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:06acd5300df80e3a19fa81b6a1f07fb4341f6d236a9abdf5c6355460169dcd81
3
- size 8519585885
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00021-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a3fd4a4f6d849cc3b382701c0b02185b7185be1480861c7e094b10881f0ae59e
3
- size 9994004482
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00022-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0273795375f0fe9a3f0a6023d4f5136b77ba9a7e7d01f3fc9e8f977d05f1f1b1
3
- size 9783670286
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00023-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:214860620cd4e3f2a76a6ecf3342fd1951c9dff727e48690f037fc4537c54e09
3
- size 9841638002
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00024-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5ed0326cf5f651d68b1d44a5a4a620db6b8b183b6141794a45fd17cf1135476f
3
- size 9841638578
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00025-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:229a4c360e77740c43765d0be8bdf0d8f6c7f7b49cbed5e82b3aaa69048985ec
3
- size 9841638578
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00026-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1b7e0b3ee6220ea4f878d3cda3f986149811d6b2168d98a834820603c1d00d1c
3
- size 9841638578
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00027-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0c0d50f8905298b5f0029101d9b88dcb146e10b47298a0691b6830f7fd9d5a73
3
- size 9840245586
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00028-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:383a2fd3e8844aeffa9d8301a0e086fe85aaa52635042d84ede002c1ad215baa
3
- size 9841638038
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00029-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c06d6664acc53e8ee2377e4c9d24aec1ce936ca3a16aa91352322f6fe73ff1bc
3
- size 9841638026
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00030-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:70ccdfb8d25df5178468f42a2174d5bf1e6d57b0b1521e96c478355a8d243ac8
3
- size 9841638002
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00031-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ba397be8edb97cdc6fb49dd26b757c341ec66461b3d9aa68989f6177fcc02f75
3
- size 9841638002
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00032-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e2eab171a16d48be2bdd9db1fb8359a38a29063365b98f84134607cbec1dc1ad
3
- size 9841638578
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00033-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3f94d0ce0b5a0ffdc5a2420bd8fa9f038a39b11591b61d7542678d5bd4f53150
3
- size 9841638578
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00034-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:08668f2c0aa326e8a8af24f8e871de10915b075bbcf6b7b80fb5263179e735aa
3
- size 9841638642
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00035-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:45ac7951c0f6ef9f05648d2ff0035d0d113ee78426155392c46a4ca71fb39b85
3
- size 9840245650
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00036-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:18db40e0f0ec40a813550a523c6adbcc8d8315d0120547070aa41f27f8b5c7e1
3
- size 9841638102
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00037-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:db95c6d4e8d3f2413a1d5db18d81461e0fc89dea4fd01a0eac1de38f289cad30
3
- size 9841638090
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00038-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:851f0befef1a17e1fef76317e565705ede8756592a7b1a580631456d6f7c1b63
3
- size 9841638066
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00039-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9bfe76cd734b20e4b1fb511d875833c8bbd38411c0e5559710800e19c2d58289
3
- size 9841638066
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00040-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:03a909e37057bfa93ab98b4f10cfe92ab48f0ce69d24c6f60dd54d7943d96c78
3
- size 6879545036
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00041-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3961e57e3b417e36eb02ce367329357ea24743400f452edb8ca94376edbcc90e
3
- size 9994004482
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00042-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d5ad4ee06f8b166405c00dbc716de71c7e6537d0afb8aa20802b43d7f87fe4e9
3
- size 9783670286
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00043-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1a26f8d57918f36ee78021ca36f4d64d4c2cd7fbbd52e19a44c70ecc761d1d83
3
- size 9841638002
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00044-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:2d6e96797eb4e4875e4b10f3cb34d7db993db411c0be8259ad4dc94faea75126
3
- size 9841638578
 
 
 
 
Hunyuan-A50B-Pretrain/pytorch_model-00045-of-00080.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:18f94ff9c64842699f2b163a7eb24f008c5f5c3861fb3f28f92b8140b79ad689
3
- size 9841638578