hunyuan
custom_code
HunyuanVideo-PromptRewrite / tokenization_hy.py
yestinl
update model
42a3dc7
raw
history blame
12.7 kB
# coding=utf-8
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
import os
import base64
import logging
import tiktoken
import unicodedata
from transformers import PreTrainedTokenizer, AddedToken
from typing import Collection, Dict, List, Set, Tuple, Union
logger = logging.getLogger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "hy.tiktoken"}
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|""" \
r"""[^\r\n\p{L}\p{N}]?\p{L}+|""" \
r"""\p{N}|""" \
r""" ?[^\s\p{L}\p{N}]+[\r\n]*|""" \
r"""\s*[\r\n]+|""" \
r"""\s+(?!\S)|""" \
r"""\s+"""
# default eod_token and bod_token of our base model
ENDOFTEXT = "<|endoftext|>"
STARTOFTEXT = "<|startoftext|>"
# extra flag token for other training
BOSTOKEN = "<|bos|>"
EOSTOKEN = "<|eos|>"
PADTOKEN = "<|pad|>"
# extra special tokens for the tokenizer
# as the default behavior is changed to allow special tokens in
# regular texts, the surface forms of special tokens need to be
# as different as possible to minimize the impact
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(204)))
SPECIAL_START_ID = 127957
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
dic = {}
rank = 0
for i, line in enumerate(open(tiktoken_bpe_file, "rb")):
if line:
token, _ = line.split()
# skip duplicated tokens, this should not happen
if base64.b64decode(token) in dic:
raise ValueError(f"!ERROR: duplicated token {token} in your vocab file")
dic[base64.b64decode(token)] = int(rank)
rank += 1
return dic
# special tokens for pretrain and finetune models
SPECIAL_TOKENS = tuple(
enumerate(
(
(
ENDOFTEXT,
STARTOFTEXT,
BOSTOKEN,
EOSTOKEN,
PADTOKEN,
)
+ EXTRAS
),
start=SPECIAL_START_ID,
)
)
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
class HYTokenizer(PreTrainedTokenizer):
"""
HunYuan Tokenizer Initialization. We extend `tiktoken` vocab and
the default EOD & BOD special tokens are used for base model.
Args:
vocab_file (`str`):
Path to the vocabulary file.
errors (`str`):
How to handle errors in decoding UTF-8 byte sequences.
use ignore if you are in streaming inference
bod_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""<|startoftext|>""`):
The beginning of document token that was used for training. can be modified by your task.
default to be `<|startoftext|>` for released base model.
eod_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""<|endoftext|>""`):
The end of document token that was used for training. can be modified by your task.
default to be `<|endoftext|>` for released base model.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `None`):
The start or sep special token that was used for some training tasks.
default to be `<|startoftext|>` for released base model.
It can be set to `<|bos|>` when you training for some other task
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `None`):
The end or sep special token that was used for some training tasks.
default to be `<|endoftext|>` for released base model.
It can be set to `<|eos|>` when you training for some other task
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
special_vocab_file (str, *optional*):
Customed special extra vocab file, same format with hy.tiktoken.
**Be careful** to use the extra special vocab, it will may cause the model loading collapse.
The data line be like:
`PHxhYmN8Pg== 0`
the id followed `base64.encode(str)` is unused, we will reset them in case of collision
add_bod_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of documents.
This will effect `build_inputs_with_special_tokens` method
add_eod_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of documents.
This will effect `build_inputs_with_special_tokens` method
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
errors="replace",
bod_token="<|startoftext|>",
eod_token="<|endoftext|>",
bos_token="<|startoftext|>",
eos_token="<|endoftext|>",
pad_token="<|pad|>",
add_bod_token=True,
add_eod_token=True,
**kwargs,
):
super().__init__(**kwargs)
self.errors = errors
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
self.special_tokens = {
token: index
for index, token in SPECIAL_TOKENS
}
enc = tiktoken.Encoding(
"HunYuan",
pat_str=PAT_STR,
mergeable_ranks=self.mergeable_ranks,
special_tokens=self.special_tokens,
)
assert (
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
), f"{len(self.mergeable_ranks)} + {len(self.special_tokens)} != {enc.n_vocab} in encoding"
self.decoder = {
v: k for k, v in self.mergeable_ranks.items()
} # type: dict[int, bytes|str]
self.decoder.update({v: k for k, v in self.special_tokens.items()})
self.tokenizer = enc
self.bod_token, self.bod_id = bod_token, self.special_tokens[bod_token]
self.eod_token, self.eod_id = eod_token, self.special_tokens[eod_token]
self.bos_token, self.bos_id = bos_token, self.special_tokens[bos_token]
self.eos_token, self.eos_id = eos_token, self.special_tokens[eos_token]
self.pad_token, self.pad_id = pad_token, self.special_tokens[pad_token]
self._num_special_token = len(self.special_tokens)
self.add_bod_token = add_bod_token
self.add_eod_token = add_eod_token
def __getstate__(self):
state = self.__dict__.copy()
del state["tokenizer"]
return state
def __setstate__(self, state):
self.__dict__.update(state)
enc = tiktoken.Encoding(
"HunYuan",
pat_str=PAT_STR,
mergeable_ranks=self.mergeable_ranks,
special_tokens=self.special_tokens,
)
self.tokenizer = enc
def __len__(self) -> int:
return self.tokenizer.n_vocab
def get_vocab(self) -> Dict[bytes, int]:
"""Return the vocabulary as a dictionary, without special tokens."""
return self.mergeable_ranks
def convert_tokens_to_ids(
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
) -> List[int]:
ids = []
if isinstance(tokens, (str, bytes)):
if tokens in self.special_tokens:
return self.special_tokens[tokens]
else:
return self.mergeable_ranks.get(tokens)
for token in tokens:
if token in self.special_tokens:
ids.append(self.special_tokens[token])
else:
ids.append(self.mergeable_ranks.get(token))
return ids
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bod_token_id = [self.bod_id] if self.add_bod_token else []
eod_token_id = [self.eod_id] if self.add_eod_token else []
output = bod_token_id + token_ids_0 + eod_token_id
if token_ids_1 is not None:
output = output + bod_token_id + token_ids_1 + eod_token_id
return output
def _add_tokens(
self,
new_tokens: Union[List[str], List[AddedToken]],
special_tokens: bool = False,
) -> List[Tuple[int, str]]:
"""do not support adding tokens"""
if not special_tokens and new_tokens:
raise ValueError("Adding regular tokens is not supported")
for token in new_tokens:
surface_form = token.content if isinstance(token, AddedToken) else token
if surface_form not in SPECIAL_TOKENS_SET:
raise ValueError("Adding unknown special tokens is not supported")
return 0
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
"""
Save only the vocabulary of the tokenizer (vocabulary).
Returns:
`Tuple(str)`: Paths to the files saved.
"""
file_path = os.path.join(save_directory, "hy.tiktoken")
with open(file_path, "w", encoding="utf8") as w:
for k, v in self.mergeable_ranks.items():
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
w.write(line)
return (file_path,)
def tokenize(
self,
text: str,
allowed_special: Union[Set, str] = "all",
disallowed_special: Union[Collection, str] = (),
**kwargs,
) -> List[Union[bytes, str]]:
"""
Converts a string in a sequence of tokens.
Args:
text (`str`):
The sequence to be encoded.
allowed_special (`Literal["all"]` or `set`):
The surface forms of the tokens to be encoded as special tokens in regular texts.
Default to "all".
disallowed_special (`Literal["all"]` or `Collection`):
The surface forms of the tokens that should not be in regular texts and trigger errors.
Default to an empty tuple.
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific encode method.
Returns:
`List[bytes|str]`: The list of tokens.
"""
tokens = []
text = unicodedata.normalize("NFC", text)
# this implementation takes a detour: text -> token id -> token surface forms
for t in self.tokenizer.encode(
text, allowed_special=allowed_special, disallowed_special=disallowed_special
):
tokens.append(self.decoder[t])
return tokens
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
"""
Converts a sequence of tokens in a single string.
"""
text = ""
temp = b""
for t in tokens:
if isinstance(t, str):
if temp:
text += temp.decode("utf-8", errors=self.errors)
temp = b""
text += t
elif isinstance(t, bytes):
temp += t
else:
raise TypeError("token should only be of type types or str")
if temp:
text += temp.decode("utf-8", errors=self.errors)
return text
@property
def vocab_size(self):
return self.tokenizer.n_vocab
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
"""Converts an id to a token, special tokens included"""
if index in self.decoder:
return self.decoder[index]
raise ValueError("unknown ids")
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
"""Converts a token to an id using the vocab, special tokens included"""
if token in self.special_tokens:
return self.special_tokens[token]
if token in self.mergeable_ranks:
return self.mergeable_ranks[token]
raise ValueError("unknown token")
def _tokenize(self, text: str, **kwargs):
"""
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
Do NOT take care of added tokens.
"""
raise NotImplementedError
def _decode(
self,
token_ids: Union[int, List[int]],
skip_special_tokens: bool = False,
errors: str = None,
**kwargs,
) -> str:
if isinstance(token_ids, int):
token_ids = [token_ids]
if skip_special_tokens:
token_ids = [i for i in token_ids if i < self.eod_id]
return self.tokenizer.decode(token_ids, errors=errors or self.errors)