Automatic Speech Recognition
Transformers
Safetensors
Welsh
English
wav2vec2
Inference Endpoints
DewiBrynJones's picture
Model save
124ec62 verified
|
raw
history blame
2.57 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-xlsr-53-ft-ccv-en-cy
    results: []

wav2vec2-xlsr-53-ft-ccv-en-cy

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2754
  • Wer: 0.2115

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 800
  • training_steps: 9000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.0574 0.25 500 2.0297 0.9991
1.224 0.5 1000 0.5368 0.4342
0.434 0.75 1500 0.4861 0.3891
0.3295 1.01 2000 0.4301 0.3411
0.2739 1.26 2500 0.3818 0.3053
0.2619 1.51 3000 0.3894 0.3060
0.2517 1.76 3500 0.3497 0.2802
0.2244 2.01 4000 0.3519 0.2792
0.1854 2.26 4500 0.3376 0.2718
0.1779 2.51 5000 0.3206 0.2520
0.1749 2.77 5500 0.3169 0.2535
0.1636 3.02 6000 0.3122 0.2465
0.137 3.27 6500 0.3054 0.2382
0.1311 3.52 7000 0.2956 0.2280
0.1261 3.77 7500 0.2898 0.2236
0.1187 4.02 8000 0.2847 0.2176
0.1011 4.27 8500 0.2763 0.2124
0.0981 4.52 9000 0.2754 0.2115

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2