|
--- |
|
language: he |
|
datasets: |
|
- MatanBenChorin/HebrewMetaphors |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: hebert-finetuned-hebrew-metaphor |
|
results: [] |
|
widget: |
|
- text: "לטחון [SEP] להכנת קפה במקינטה יש לטחון את הקפה טחינה גסה יותר מאשר קפה לאספרסו" |
|
- text: "לטחון [SEP] תעירו אותי כשיקרה עוד משהו מעניין, בינתיים אין מה לטחון את זה" |
|
- text: "לבשל [SEP] השחקן השתמש ביכולותיו הפיזיות, הגובה והקפיצה שלו, כדי לבשל ולהבקיע שערים" |
|
- text: "לבשל [SEP] שישי בבוקר זה זמן טוב כדי לבשל ארוחה יפה" |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hebert-finetuned-hebrew-metaphor |
|
|
|
לחלום, |
|
לחתוך, |
|
לעוף, |
|
לפרק, |
|
להדליק, |
|
לכבס, |
|
לכופף, |
|
לרסק, |
|
לבשל, |
|
למחוק, |
|
לקפוץ, |
|
לקרוע, |
|
לקצור, |
|
לרקוד, |
|
לשבור, |
|
לשדוד, |
|
לשתות, |
|
לטחון, |
|
לתפור, |
|
לזרוע |
|
|
|
This model is a fine-tuned version of [avichr/heBERT](https://huggingface.co/avichr/heBERT) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4682 |
|
- Accuracy: 0.9510 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 389 | 0.1813 | 0.9379 | |
|
| 0.2546 | 2.0 | 778 | 0.2309 | 0.9479 | |
|
| 0.08 | 3.0 | 1167 | 0.3342 | 0.9492 | |
|
| 0.0298 | 4.0 | 1556 | 0.4076 | 0.9460 | |
|
| 0.0298 | 5.0 | 1945 | 0.3803 | 0.9485 | |
|
| 0.0105 | 6.0 | 2334 | 0.3674 | 0.9454 | |
|
| 0.0077 | 7.0 | 2723 | 0.5356 | 0.9410 | |
|
| 0.0088 | 8.0 | 3112 | 0.4776 | 0.9422 | |
|
| 0.0044 | 9.0 | 3501 | 0.4258 | 0.9504 | |
|
| 0.0044 | 10.0 | 3890 | 0.4305 | 0.9523 | |
|
| 0.001 | 11.0 | 4279 | 0.4357 | 0.9548 | |
|
| 0.0031 | 12.0 | 4668 | 0.4770 | 0.9473 | |
|
| 0.0015 | 13.0 | 5057 | 0.4604 | 0.9523 | |
|
| 0.0015 | 14.0 | 5446 | 0.4670 | 0.9510 | |
|
| 0.0022 | 15.0 | 5835 | 0.4682 | 0.9510 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|
|
|
|
|