Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: tawfikgh/T5-CNN-Daily-Mail
|
4 |
+
tags:
|
5 |
+
- generated_from_keras_callback
|
6 |
+
model-index:
|
7 |
+
- name: tawfikgh/T5-CNN-Daily-Mail-30000
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
12 |
+
probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# tawfikgh/T5-CNN-Daily-Mail-30000
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [tawfikgh/T5-CNN-Daily-Mail](https://huggingface.co/tawfikgh/T5-CNN-Daily-Mail) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Train Loss: 1.9838
|
19 |
+
- Train Accuracy: 0.4388
|
20 |
+
- Validation Loss: 1.7669
|
21 |
+
- Validation Accuracy: 0.4634
|
22 |
+
- Train Rouge1: 23.0643
|
23 |
+
- Train Rouge2: 9.2989
|
24 |
+
- Train Rougel: 18.6586
|
25 |
+
- Train Rougelsum: 21.4398
|
26 |
+
- Train F1: 0.9629
|
27 |
+
- Train Gen Len: 19.0
|
28 |
+
- Epoch: 0
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
|
48 |
+
- training_precision: float32
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train F1 | Train Gen Len | Epoch |
|
53 |
+
|:----------:|:--------------:|:---------------:|:-------------------:|:------------:|:------------:|:------------:|:---------------:|:--------:|:-------------:|:-----:|
|
54 |
+
| 1.9838 | 0.4388 | 1.7669 | 0.4634 | 23.0643 | 9.2989 | 18.6586 | 21.4398 | 0.9629 | 19.0 | 0 |
|
55 |
+
|
56 |
+
|
57 |
+
### Framework versions
|
58 |
+
|
59 |
+
- Transformers 4.35.2
|
60 |
+
- TensorFlow 2.15.0
|
61 |
+
- Datasets 2.16.1
|
62 |
+
- Tokenizers 0.15.0
|