tatiana-merz's picture
Update README.md
4490708
|
raw
history blame
1.89 kB
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: turkic-cyrillic-classifier
results: []
language:
- ba
- cv
- sah
- tt
- ky
- kk
- tyv
- krc
- ru
datasets:
- tatiana-merz/cyrillic_turkic_langs
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# turkic-cyrillic-classifier
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an tatiana-merz/cyrillic_turkic_langs dataset.
It achieves the following results on the evaluation set:
{'test_loss': 0.013604652136564255,
'test_accuracy': 0.997,
'test_f1': 0.9969996069718668,
'test_runtime': 60.5479,
'test_samples_per_second': 148.643,
'test_steps_per_second': 2.329}
## Model description
The model classifies text based on a provided Turkic language written in Cyrillic script.
## Intended uses & limitations
## Training and evaluation data
[cyrillic_turkic_langs](https://huggingface.co/datasets/tatiana-merz/cyrillic_turkic_langs/)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.1063 | 1.0 | 1000 | 0.0204 | 0.9950 | 0.9950 |
| 0.0126 | 2.0 | 2000 | 0.0136 | 0.9970 | 0.9970 |
### Framework versions
- Transformers 4.27.0
- Pytorch 1.13.1+cu116
- Datasets 2.10.1