|
--- |
|
base_model: EleutherAI/pile-t5-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: pile-t5-base-inst |
|
results: [] |
|
language: |
|
- en |
|
metrics: |
|
- rouge |
|
library_name: transformers |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pile-t5-base-inst |
|
|
|
This model is a fine-tuned version of [EleutherAI/pile-t5-base](https://huggingface.co/EleutherAI/pile-t5-base) on [taskydata/Pile-T5-Instruction](https://huggingface.co/datasets/taskydata/Pile-T5-Instruction) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5082 |
|
- Rouge2 Precision: 0.2496 |
|
- Rouge2 Recall: 0.1633 |
|
- Rouge2 Fmeasure: 0.1786 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| |
|
| 5.8554 | 0.58 | 1500 | 3.2533 | 0.1 | 0.0744 | 0.0721 | |
|
| 4.2403 | 1.16 | 3000 | 2.7020 | 0.1704 | 0.1174 | 0.1248 | |
|
| 3.8091 | 1.74 | 4500 | 2.5844 | 0.2476 | 0.1617 | 0.1767 | |
|
| 3.6589 | 2.32 | 6000 | 2.5289 | 0.2467 | 0.1621 | 0.1769 | |
|
| 3.5802 | 2.9 | 7500 | 2.5082 | 0.2496 | 0.1633 | 0.1786 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |