tasinhoque's picture
Update README.md
6e2784c
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - go_emotions
metrics:
  - f1
model-index:
  - name: roberta-large-goemotions
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: go_emotions
          type: multilabel_classification
          config: simplified
          split: test
          args: simplified
        metrics:
          - name: F1
            type: f1
            value: 0.5102
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: go_emotions
          type: multilabel_classification
          config: simplified
          split: validation
          args: simplified
        metrics:
          - name: F1
            type: f1
            value: 0.5227

Text Classification GoEmotions

This model is a fine-tuned version of roberta-large on the go_emotions dataset. It achieves the following results on the test set (with a threshold of 0.15):

  • Accuracy: 0.4175
  • Precision: 0.4934
  • Recall: 0.5621
  • F1: 0.5102

Code

Code for training this model can be found here.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Validation Loss Accuracy Precision Recall F1
No log 1.0 0.088978 0.404349 0.480763 0.456827 0.444685
0.10620 2.0 0.082806 0.411353 0.460896 0.536386 0.486819
0.10620 3.0 0.081338 0.420199 0.519828 0.561297 0.522716

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1