ksirts's picture
Update README.md
79c5e1f verified
|
raw
history blame
9.54 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - sentiment_reduced
metrics:
  - accuracy
model-index:
  - name: EstBERT128_Sentiment
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: Estonian Sentiment Corpus
          type: sentiment
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.747863233089447
language: et
license: cc-by-4.0
widget:
  - text: >-
      Enam kui kümme aastat tagasi tegutses huumorisaates «Wremja» inspektor
      Kukeke, kes kogu aeg vingus väikese palga pärast ja vaatas, mida saaks töö
      juurest koju tassida. Stsenaristid Andrus Kivirähk ja Mart Juur olid
      Kukekese isikusse kokku valanud kõik, mis 1990. aastate Eesti
      politseinikke halvast küljest iseloomustas.
    example_title: negative
  - text: >-
      Isiklikult kohtasin natukegi Kukekese moodi politseinikku viimati kaheksa
      aasta eest Lätis. Eranditult kõik viimase kümnendi kokkupuuted
      politseiametnikega on kinnitanud: vaatamata raskustele on Eesti riik
      suutnud korrakaitsjateks värvata inimesi, kes on arukad, kohusetundlikud,
      lugupidamist sisendavas füüsilises vormis ja hea väljendusoskusega.
    example_title: positive
  - text: >-
      Pisut retooriline küsimus, kelle või mille jaoks on Estonian Ai, nõuab
      taas vastust. Oleme jõudnud olukorda, kus vastus peaks olema juba
      konkreetne. Siinkohal tuleks hoiduda rahvusliku lennukompanii mõistest,
      mis pärineb ajast, kui lennundusäri oli peaaegu sajaprotsendiliselt riigi
      kontrolli all ning riigid ja nende grupeeringud reguleerisid äärmise
      põhjalikkusega lennundusturgu.
    example_title: neutral

EstBERT128_sentiment

This model is a fine-tuned version of tartuNLP/EstBERT on the reduced version of the Estonian Valence corpus, where the items with Mixed labels were removed. The data (containing Positive, Negative and Neutral labels) was split into 70/10/20 train/dev/test splits.

It achieves the following results on the developments split:

  • Loss: 2.2440
  • Accuracy: 0.7926

It achieves the following results on the test split:

  • Loss: 2.7633
  • Accuracy: 0.7479

How to use?

You can use this model with the Transformers pipeline for text classification.

from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("tartuNLP/EstBERT128_sentiment")
model = AutoModelForSequenceClassification.from_pretrained("tartuNLP/EstBERT128_sentiment")

nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)
text = "Viimastel nädalatel on üha valjemaks muutunud hääled, mis läbisegi süüdistavad regionaalminister Madis Kallast röövretke korraldamises rikastesse valdadesse ja teisalt tegevusetuses."
result = nlp(text)

print(result)
[{'label': 'negatiivne', 'score': 0.9999992847442627}]

Model description

A single linear layer classifier is fit on top of the last layer [CLS] token representation of the EstBERT model. The model is fully fine-tuned during training.

Intended uses & limitations

This model is intended to be used as it is. We hope that it can prove to be useful to somebody but we do not guarantee that the model is useful for anything or that the predictions are accurate on new data.

Citation information

If you use this model, please cite:

@inproceedings{tanvir2021estbert,
  title={EstBERT: A Pretrained Language-Specific BERT for Estonian},
  author={Tanvir, Hasan and Kittask, Claudia and Eiche, Sandra and Sirts, Kairit},
  booktitle={Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)},
  pages={11--19},
  year={2021}
}

Training and evaluation data

The model was trained and evaluated on the sentiment categories of the Estonian Valence corpus. The data was split into train/dev/test parts with 70/10/20 proportions.

The Estonian Valence corpus has four sentiment labels:

  • positive
  • negative
  • neutral
  • mixed

Following Pajupuu et al., 2016, the items with mixed labels were removed. Thus, the model was trained and evaluated on the reduced version of the dataset containing only three labels (positive, negative and neutral).

Training procedure

The model was trained for maximu 100 epochs using early stopping procedure. After every epoch, the accuracy was calculated on the development set. If the development set accuracy did not improve for 20 epochs, the training was stopped.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
  • lr_scheduler_type: polynomial
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

The final model was taken after 44th epoch.

Training Loss Epoch Step Validation Loss Accuracy
0.836 1 38 0.6966 0.7216
0.5336 2 76 0.5948 0.7699
0.2913 3 114 0.7197 0.7358
0.1048 4 152 0.9570 0.7557
0.0424 5 190 1.2144 0.7528
0.0262 6 228 1.2675 0.7727
0.0169 7 266 1.4788 0.75
0.0048 8 304 1.5053 0.7699
0.0084 9 342 1.5368 0.7614
0.0087 10 380 1.6678 0.7699
0.0082 11 418 1.7598 0.7642
0.0104 12 456 1.6951 0.7528
0.0115 13 494 1.7123 0.7727
0.0111 14 532 1.7577 0.7528
0.0028 15 570 1.7383 0.7727
0.0032 16 608 2.0254 0.7727
0.0107 17 646 2.2123 0.7415
0.0056 18 684 1.9406 0.7614
0.0078 19 722 2.2002 0.7642
0.0041 20 760 2.0157 0.7670
0.0087 21 798 2.1228 0.7642
0.0113 22 836 2.3692 0.7727
0.0025 23 874 2.2211 0.75
0.0083 24 912 2.2120 0.7841
0.0104 25 950 2.1478 0.7614
0.0041 26 988 2.1118 0.7756
0.002 27 1026 1.9929 0.7699
0.001 28 1064 2.0295 0.7841
0.003 29 1102 2.3142 0.7699
0.006 30 1140 2.2957 0.7642
0.0005 31 1178 2.0661 0.7642
0.0007 32 1216 2.4220 0.7614
0.0088 33 1254 2.2842 0.7614
0.0 34 1292 2.4060 0.7585
0.0 35 1330 2.2088 0.7585
0.0 36 1368 2.2181 0.7614
0.0 37 1406 2.2560 0.7784
0.0 38 1444 2.4803 0.7585
0.0 39 1482 2.1163 0.7812
0.0087 40 1520 2.3410 0.75
0.0021 41 1558 2.3583 0.75
0.0054 42 1596 2.3546 0.7642
0.0051 43 1634 2.2295 0.7812
0.0 44 1672 2.2440 0.7926
0.0019 45 1710 2.3248 0.7784
0.0044 46 1748 2.3058 0.7841
0.0006 47 1786 2.3588 0.7784
0.0007 48 1824 2.6541 0.7670
0.0001 49 1862 2.4621 0.7614
0.0 50 1900 2.4696 0.7727
0.0 51 1938 2.4981 0.7670
0.0031 52 1976 2.6702 0.7670
0.0 53 2014 2.4448 0.7756
0.0 54 2052 2.4214 0.7756
0.0 55 2090 2.4308 0.7841
0.0001 56 2128 2.5869 0.7642
0.0007 57 2166 2.4803 0.7727
0.0 58 2204 2.4557 0.7784
0.0 59 2242 2.4702 0.7784
0.0 60 2280 2.5165 0.7784
0.0013 61 2318 2.6322 0.7727
0.0001 62 2356 2.6253 0.7756
0.0011 63 2394 2.6303 0.7841
0.0002 64 2432 2.5646 0.7614

Framework versions

  • Transformers 4.14.1
  • Pytorch 1.10.1+cu113
  • Datasets 1.16.1
  • Tokenizers 0.10.3

Contact

Kairit Sirts: kairit.sirts@ut.ee