metadata
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- cord-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord_100
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cord-layoutlmv3
type: cord-layoutlmv3
config: cord
split: test
args: cord
metrics:
- name: Precision
type: precision
value: 0.9430473372781065
- name: Recall
type: recall
value: 0.9543413173652695
- name: F1
type: f1
value: 0.9486607142857143
- name: Accuracy
type: accuracy
value: 0.9579796264855688
layoutlmv3-finetuned-cord_100
This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2188
- Precision: 0.9430
- Recall: 0.9543
- F1: 0.9487
- Accuracy: 0.9580
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.56 | 250 | 1.0024 | 0.7392 | 0.7957 | 0.7664 | 0.8060 |
1.3949 | 3.12 | 500 | 0.5684 | 0.8330 | 0.8660 | 0.8492 | 0.8727 |
1.3949 | 4.69 | 750 | 0.3929 | 0.8931 | 0.9072 | 0.9001 | 0.9160 |
0.3964 | 6.25 | 1000 | 0.3312 | 0.9236 | 0.9326 | 0.9281 | 0.9321 |
0.3964 | 7.81 | 1250 | 0.2754 | 0.9275 | 0.9386 | 0.9330 | 0.9410 |
0.216 | 9.38 | 1500 | 0.2447 | 0.9328 | 0.9454 | 0.9390 | 0.9478 |
0.216 | 10.94 | 1750 | 0.2467 | 0.9363 | 0.9461 | 0.9412 | 0.9478 |
0.1534 | 12.5 | 2000 | 0.2300 | 0.9436 | 0.9521 | 0.9478 | 0.9537 |
0.1534 | 14.06 | 2250 | 0.2155 | 0.9459 | 0.9558 | 0.9509 | 0.9597 |
0.119 | 15.62 | 2500 | 0.2188 | 0.9430 | 0.9543 | 0.9487 | 0.9580 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3