tanoManzo's picture
End of training
6026303 verified
metadata
base_model: zhihan1996/DNABERT-2-117M
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: DNABERT-2-117M_ft_BioS45_1kbpHG19_DHSs_H3K27AC
    results: []

DNABERT-2-117M_ft_BioS45_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of zhihan1996/DNABERT-2-117M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7663
  • F1 Score: 0.6154
  • Precision: 0.8763
  • Recall: 0.4742
  • Accuracy: 0.6908
  • Auc: 0.8534
  • Prc: 0.8406

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.7033 0.4205 500 0.5780 0.7163 0.7317 0.7016 0.7101 0.7860 0.7818
0.5929 0.8410 1000 0.5370 0.7339 0.7525 0.7161 0.7291 0.8066 0.7979
0.5608 1.2616 1500 0.5352 0.7532 0.7508 0.7556 0.7417 0.8204 0.8097
0.5471 1.6821 2000 0.5455 0.6955 0.8211 0.6032 0.7244 0.8317 0.8200
0.5252 2.1026 2500 0.5145 0.7897 0.7367 0.8508 0.7636 0.8384 0.8261
0.4833 2.5231 3000 0.5229 0.7976 0.7146 0.9024 0.7610 0.8469 0.8351
0.5161 2.9437 3500 0.4988 0.7593 0.8049 0.7185 0.7623 0.8506 0.8393
0.4921 3.3642 4000 0.4784 0.7967 0.7447 0.8565 0.7720 0.8541 0.8426
0.4779 3.7847 4500 0.7663 0.6154 0.8763 0.4742 0.6908 0.8534 0.8406

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0