tanoManzo's picture
End of training
239b82a verified
metadata
base_model: zhihan1996/DNABERT-2-117M
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: DNABERT-2-117M_ft_BioS2_1kbpHG19_DHSs_H3K27AC
    results: []

DNABERT-2-117M_ft_BioS2_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of zhihan1996/DNABERT-2-117M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4620
  • F1 Score: 0.7974
  • Precision: 0.8134
  • Recall: 0.7819
  • Accuracy: 0.7933
  • Auc: 0.8741
  • Prc: 0.8601

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.706 0.1680 500 0.6216 0.6107 0.7600 0.5105 0.6616 0.7690 0.7525
0.614 0.3360 1000 0.5784 0.7600 0.6685 0.8805 0.7108 0.7836 0.7638
0.5795 0.5040 1500 0.5409 0.7576 0.6964 0.8307 0.7236 0.7938 0.7723
0.557 0.6720 2000 0.5898 0.7622 0.6293 0.9661 0.6864 0.8063 0.7838
0.561 0.8401 2500 0.5143 0.7770 0.7298 0.8307 0.7520 0.8183 0.7953
0.5313 1.0081 3000 0.4928 0.7958 0.7300 0.8746 0.7666 0.8334 0.8096
0.5167 1.1761 3500 0.5086 0.7590 0.7963 0.7250 0.7605 0.8471 0.8266
0.5052 1.3441 4000 0.4732 0.8021 0.7578 0.8520 0.7814 0.8533 0.8327
0.4923 1.5121 4500 0.4741 0.7898 0.7864 0.7932 0.7804 0.8572 0.8386
0.493 1.6801 5000 0.4683 0.7821 0.7995 0.7654 0.7782 0.8618 0.8431
0.4834 1.8481 5500 0.4522 0.8100 0.7702 0.8543 0.7916 0.8638 0.8465
0.4871 2.0161 6000 0.4527 0.8160 0.7475 0.8982 0.7893 0.8665 0.8500
0.457 2.1841 6500 0.6625 0.7653 0.6231 0.9916 0.6838 0.8679 0.8530
0.4685 2.3522 7000 0.5230 0.7281 0.8393 0.6430 0.7503 0.8681 0.8521
0.4567 2.5202 7500 0.4433 0.8198 0.7557 0.8956 0.7952 0.8702 0.8533
0.4506 2.6882 8000 0.4520 0.8208 0.7520 0.9034 0.7948 0.8721 0.8580
0.4443 2.8562 8500 0.4590 0.8029 0.7963 0.8097 0.7933 0.8730 0.8581
0.4433 3.0242 9000 0.5848 0.7530 0.8380 0.6837 0.7668 0.8738 0.8592
0.4355 3.1922 9500 0.4620 0.7974 0.8134 0.7819 0.7933 0.8741 0.8601

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0