pd_subcate / README.md
tangminhanh's picture
pd_subcate
4874228 verified
|
raw
history blame
2.18 kB
metadata
license: mit
base_model: tangminhanh/pd_cate
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: pd_subcate
    results: []

pd_subcate

This model is a fine-tuned version of tangminhanh/pd_cate on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1790
  • Accuracy: 0.4074
  • F1: 0.4502
  • Precision: 0.4817
  • Recall: 0.4227

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 42 0.1567 0.4058 0.4567 0.4946 0.4242
No log 2.0 84 0.1583 0.3997 0.4503 0.4901 0.4165
No log 3.0 126 0.1599 0.4058 0.4613 0.5055 0.4242
No log 4.0 168 0.1636 0.4150 0.4596 0.4973 0.4273
No log 5.0 210 0.1670 0.3936 0.4474 0.4874 0.4135
No log 6.0 252 0.1682 0.4043 0.4507 0.4867 0.4196
No log 7.0 294 0.1739 0.4089 0.4594 0.4888 0.4334
No log 8.0 336 0.1790 0.4074 0.4502 0.4817 0.4227

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1