ops_subcate / README.md
tangminhanh's picture
ops_subcate
3d97212 verified
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: ops_subcate
    results: []

ops_subcate

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1575
  • Accuracy: 0.7428
  • F1: 0.7647
  • Precision: 0.7715
  • Recall: 0.7581

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 49 0.1300 0.7291 0.7604 0.7883 0.7345
No log 2.0 98 0.1272 0.7391 0.7707 0.7989 0.7444
No log 3.0 147 0.1294 0.7391 0.7654 0.7918 0.7407
No log 4.0 196 0.1388 0.7341 0.7567 0.7733 0.7407
No log 5.0 245 0.1326 0.7541 0.7791 0.8026 0.7568
No log 6.0 294 0.1407 0.7478 0.7743 0.7940 0.7556
No log 7.0 343 0.1445 0.7341 0.7576 0.7712 0.7444
No log 8.0 392 0.1533 0.7528 0.7684 0.7776 0.7593
No log 9.0 441 0.1573 0.7628 0.7747 0.7816 0.7680
No log 10.0 490 0.1575 0.7428 0.7647 0.7715 0.7581

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1