ops_subcate / README.md
tangminhanh's picture
ops_subcate
09a6bbc verified
|
raw
history blame
2.21 kB
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: ops_subcate
    results: []

ops_subcate

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1325
  • Accuracy: 0.7228
  • F1: 0.7556
  • Precision: 0.7866
  • Recall: 0.7270

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 49 0.6030 0.0 0.0 0.0 0.0
No log 2.0 98 0.3307 0.0 0.0 0.0 0.0
No log 3.0 147 0.3022 0.0 0.0 0.0 0.0
No log 4.0 196 0.2354 0.3121 0.4343 0.7171 0.3114
No log 5.0 245 0.1831 0.5306 0.6169 0.7313 0.5335
No log 6.0 294 0.1580 0.6355 0.6895 0.7504 0.6377
No log 7.0 343 0.1408 0.6779 0.7257 0.7702 0.6861
No log 8.0 392 0.1325 0.7228 0.7556 0.7866 0.7270

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1