cate-ts / README.md
tangminhanh's picture
Duplicate from tangminhanh/results
55d80df verified
|
raw
history blame
2.33 kB
metadata
license: mit
base_model: tangminhanh/results
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of tangminhanh/results on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0214
  • Accuracy: 0.8673
  • F1: 0.8828
  • Precision: 0.8907
  • Recall: 0.8750

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0959 1.0 816 0.0287 0.7330 0.7966 0.8666 0.7371
0.0223 2.0 1632 0.0203 0.8256 0.8587 0.8922 0.8277
0.0171 3.0 2448 0.0197 0.8348 0.8639 0.8824 0.8463
0.0116 4.0 3264 0.0194 0.8486 0.8708 0.8873 0.8548
0.0101 5.0 4080 0.0198 0.8532 0.8704 0.8798 0.8612
0.008 6.0 4896 0.0200 0.8550 0.8742 0.8872 0.8615
0.0065 7.0 5712 0.0204 0.8614 0.8775 0.8867 0.8686
0.0056 8.0 6528 0.0208 0.8587 0.8768 0.8858 0.8679
0.0048 9.0 7344 0.0214 0.8624 0.8781 0.8875 0.8689
0.0044 10.0 8160 0.0214 0.8673 0.8828 0.8907 0.8750

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1