tanatapanun's picture
Training in progress, step 500
acaaecb
|
raw
history blame
4.49 kB
metadata
license: apache-2.0
base_model: GanjinZero/biobart-v2-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: fine-tuned-2048-inputs-30-epochs
    results: []

fine-tuned-2048-inputs-30-epochs

This model is a fine-tuned version of GanjinZero/biobart-v2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8273
  • Rouge1: 0.2933
  • Rouge2: 0.1173
  • Rougel: 0.2662
  • Rougelsum: 0.2653
  • Gen Len: 15.53

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 151 0.7529 0.2082 0.0781 0.1878 0.1884 13.16
No log 2.0 302 0.7144 0.2589 0.0817 0.2239 0.2244 13.76
No log 3.0 453 0.6993 0.2409 0.0773 0.2135 0.2136 14.52
0.7226 4.0 604 0.6957 0.2891 0.1014 0.262 0.2618 14.27
0.7226 5.0 755 0.7037 0.2925 0.1167 0.2656 0.267 14.73
0.7226 6.0 906 0.6971 0.2778 0.1124 0.2511 0.2501 14.92
0.4948 7.0 1057 0.7117 0.2816 0.1139 0.2558 0.2553 14.93
0.4948 8.0 1208 0.7185 0.2948 0.1192 0.2683 0.2679 14.45
0.4948 9.0 1359 0.7250 0.3039 0.1108 0.2748 0.2738 14.76
0.368 10.0 1510 0.7343 0.3187 0.1267 0.2921 0.2919 14.67
0.368 11.0 1661 0.7418 0.3067 0.1205 0.278 0.2772 15.23
0.368 12.0 1812 0.7521 0.3023 0.1134 0.2764 0.2756 14.91
0.368 13.0 1963 0.7556 0.2945 0.1143 0.272 0.2713 15.01
0.2865 14.0 2114 0.7636 0.3163 0.1246 0.2943 0.2942 15.44
0.2865 15.0 2265 0.7722 0.2987 0.1105 0.2705 0.2703 14.93
0.2865 16.0 2416 0.7788 0.3047 0.1091 0.2745 0.2744 15.29
0.2221 17.0 2567 0.7834 0.2973 0.113 0.2698 0.269 15.11
0.2221 18.0 2718 0.7905 0.2933 0.1139 0.2612 0.2595 15.1
0.2221 19.0 2869 0.7945 0.2936 0.1036 0.2637 0.2624 15.5
0.1825 20.0 3020 0.8033 0.3167 0.1216 0.2839 0.2837 15.54
0.1825 21.0 3171 0.8009 0.3056 0.1139 0.2753 0.2747 15.69
0.1825 22.0 3322 0.8085 0.2974 0.113 0.2632 0.2621 15.37
0.1825 23.0 3473 0.8120 0.3063 0.1191 0.2746 0.2749 15.48
0.1498 24.0 3624 0.8163 0.3045 0.1114 0.2736 0.2724 15.47
0.1498 25.0 3775 0.8197 0.3091 0.1147 0.2789 0.2788 15.51
0.1498 26.0 3926 0.8212 0.3003 0.1211 0.2715 0.2718 15.59
0.1329 27.0 4077 0.8230 0.3046 0.1158 0.2751 0.275 15.5
0.1329 28.0 4228 0.8250 0.2871 0.1118 0.2614 0.2599 15.49
0.1329 29.0 4379 0.8275 0.303 0.1109 0.2734 0.2737 15.57
0.1226 30.0 4530 0.8273 0.2933 0.1173 0.2662 0.2653 15.53

Framework versions

  • Transformers 4.36.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.15.0
  • Tokenizers 0.15.0