[DOC]: Guidance for complex use cases
Browse files
README.md
CHANGED
@@ -61,6 +61,7 @@ This code snippet demonstrates how to build a prompt with table information, and
|
|
61 |
> pip install transformers>=4.37.0
|
62 |
> ```
|
63 |
|
|
|
64 |
```python
|
65 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
66 |
|
@@ -123,6 +124,13 @@ generated_ids = [
|
|
123 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
124 |
```
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
**Deployment**
|
127 |
|
128 |
For deployment, we recommend using vLLM.
|
@@ -150,6 +158,7 @@ For deployment, we recommend using vLLM.
|
|
150 |
```
|
151 |
For more details about how to use TableGPT2, please refer to [our repository on GitHub](https://github.com/tablegpt/tablegpt-agent)
|
152 |
|
|
|
153 |
**License**
|
154 |
|
155 |
TableGPT2-7B is under apache-2.0 license.
|
|
|
61 |
> pip install transformers>=4.37.0
|
62 |
> ```
|
63 |
|
64 |
+
|
65 |
```python
|
66 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
67 |
|
|
|
124 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
125 |
```
|
126 |
|
127 |
+
**Complex Usage Scenarios**
|
128 |
+
|
129 |
+
For complex usage scenarios, we provide a [tablegpt-agent]((https://github.com/tablegpt/tablegpt-agent)) toolkit to help you more conveniently handle various types of tabular inputs.
|
130 |
+
|
131 |
+
This agent is built on top of the `Langgraph` library and provides a user-friendly interface for interacting with `TableGPT2`.
|
132 |
+
|
133 |
+
|
134 |
**Deployment**
|
135 |
|
136 |
For deployment, we recommend using vLLM.
|
|
|
158 |
```
|
159 |
For more details about how to use TableGPT2, please refer to [our repository on GitHub](https://github.com/tablegpt/tablegpt-agent)
|
160 |
|
161 |
+
|
162 |
**License**
|
163 |
|
164 |
TableGPT2-7B is under apache-2.0 license.
|