Szymon Tworkowski
commited on
Commit
•
6711cdb
1
Parent(s):
a971e97
init release
Browse files- config.json +35 -0
- configuration_longllama.py +150 -0
- generation_config.json +7 -0
- longllama_utils.py +64 -0
- modeling_longllama.py +1455 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.model +3 -0
- tokenizer_config.json +1 -0
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LongLlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"bos_token_id": 1,
|
6 |
+
"eos_token_id": 2,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 3200,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 8640,
|
11 |
+
"max_position_embeddings": 2048,
|
12 |
+
"model_type": "longllama",
|
13 |
+
"num_attention_heads": 32,
|
14 |
+
"num_hidden_layers": 26,
|
15 |
+
"pad_token_id": 0,
|
16 |
+
"rms_norm_eps": 1e-06,
|
17 |
+
"tie_word_embeddings": false,
|
18 |
+
"torch_dtype": "bfloat16",
|
19 |
+
"transformers_version": "4.30.0",
|
20 |
+
"use_cache": true,
|
21 |
+
"vocab_size": 32000,
|
22 |
+
"auto_map": {
|
23 |
+
"AutoConfig": "configuration_longllama.LongLlamaConfig",
|
24 |
+
"AutoModel": "modeling_longllama.LongLlamaModel",
|
25 |
+
"AutoModelForCausalLM": "modeling_longllama.LongLlamaForCausalLM",
|
26 |
+
"AutoModelForSequenceClassification": "modeling_longllama.LongLlamaForSequenceClassification"
|
27 |
+
},
|
28 |
+
"mem_dtype": "bfloat16",
|
29 |
+
"mem_positionals": true,
|
30 |
+
"mem_layers": [
|
31 |
+
6,
|
32 |
+
12,
|
33 |
+
18
|
34 |
+
]
|
35 |
+
}
|
configuration_longllama.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" LongLLaMA model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
LONGLLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
29 |
+
"syzymon/long_llama_3b": "https://huggingface.co/syzymon/long_llama_3b/resolve/main/config.json",
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
class LongLlamaConfig(PretrainedConfig):
|
34 |
+
r"""
|
35 |
+
This is the configuration class to store the configuration of a [`LongLlamaModel`]. It is used to instantiate an LongLLaMA
|
36 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
37 |
+
defaults will yield a similar configuration to that of the LongLLaMA-7B.
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
|
43 |
+
Args:
|
44 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
45 |
+
Vocabulary size of the LongLLaMA model. Defines the number of different tokens that can be represented by the
|
46 |
+
`inputs_ids` passed when calling [`LongLlamaModel`]
|
47 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
48 |
+
Dimension of the hidden representations.
|
49 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
50 |
+
Dimension of the MLP representations.
|
51 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
52 |
+
Number of hidden layers in the Transformer encoder.
|
53 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
54 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
55 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
56 |
+
The non-linear activation function (function or string) in the decoder.
|
57 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
58 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
59 |
+
just in case (e.g., 512 or 1024 or 2048).
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
63 |
+
The epsilon used by the rms normalization layers.
|
64 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
66 |
+
relevant if `config.is_decoder=True`.
|
67 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
68 |
+
Whether to tie weight embeddings
|
69 |
+
mem_layers (`List[int]`, defaults to `[]`):
|
70 |
+
Layers with memory
|
71 |
+
mem_positionals (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether to use positional embeddings in memory layers
|
73 |
+
mem_dtype (`str`, *optional*, defaults to `"bfloat16"`):
|
74 |
+
Type for keys and values stored in memory
|
75 |
+
mem_attention_grouping (`Tuple[int, int]`, *optional*, defaults to `None`):
|
76 |
+
One can trade speed for memory by performing attention
|
77 |
+
in memory layers sequentially.
|
78 |
+
When equal to `(4, 2048)` the memory layers will process at most 4 heads and 2048 queries from each head at once.
|
79 |
+
That is at most 4*2048 queries at once.
|
80 |
+
torch_attention (`bool`, *optional*, defaults to `False`):
|
81 |
+
Whether to use torch scaled_dot_product_attention
|
82 |
+
gradient_checkpoint_every_ith (`int`, *optional*, defaults to `1`):
|
83 |
+
When gradient checkpointing is enabled checkpoint every ith layer
|
84 |
+
|
85 |
+
Example:
|
86 |
+
|
87 |
+
```python
|
88 |
+
>>> from transformers import LongLlamaModel, LongLlamaConfig
|
89 |
+
|
90 |
+
>>> # Initializing a LongLLaMA longllama-7b style configuration
|
91 |
+
>>> configuration = LongLlamaConfig()
|
92 |
+
|
93 |
+
>>> # Initializing a model from the longllama-7b style configuration
|
94 |
+
>>> model = LongLlamaModel(configuration)
|
95 |
+
|
96 |
+
>>> # Accessing the model configuration
|
97 |
+
>>> configuration = model.config
|
98 |
+
```"""
|
99 |
+
model_type = "longllama"
|
100 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
101 |
+
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
vocab_size=32000,
|
105 |
+
hidden_size=4096,
|
106 |
+
intermediate_size=11008,
|
107 |
+
num_hidden_layers=32,
|
108 |
+
num_attention_heads=32,
|
109 |
+
hidden_act="silu",
|
110 |
+
max_position_embeddings=2048,
|
111 |
+
initializer_range=0.02,
|
112 |
+
rms_norm_eps=1e-6,
|
113 |
+
use_cache=True,
|
114 |
+
pad_token_id=0,
|
115 |
+
bos_token_id=1,
|
116 |
+
eos_token_id=2,
|
117 |
+
tie_word_embeddings=False,
|
118 |
+
last_context_length=1024,
|
119 |
+
mem_layers=[],
|
120 |
+
mem_positionals=True,
|
121 |
+
mem_dtype="bfloat16",
|
122 |
+
mem_attention_grouping=None,
|
123 |
+
torch_attention=False,
|
124 |
+
gradient_checkpoint_every_ith=1,
|
125 |
+
**kwargs,
|
126 |
+
):
|
127 |
+
self.vocab_size = vocab_size
|
128 |
+
self.max_position_embeddings = max_position_embeddings
|
129 |
+
self.hidden_size = hidden_size
|
130 |
+
self.intermediate_size = intermediate_size
|
131 |
+
self.num_hidden_layers = num_hidden_layers
|
132 |
+
self.num_attention_heads = num_attention_heads
|
133 |
+
self.hidden_act = hidden_act
|
134 |
+
self.initializer_range = initializer_range
|
135 |
+
self.rms_norm_eps = rms_norm_eps
|
136 |
+
self.use_cache = use_cache
|
137 |
+
self.last_context_length = last_context_length
|
138 |
+
self.mem_layers = mem_layers
|
139 |
+
self.mem_positionals = mem_positionals
|
140 |
+
self.mem_dtype = mem_dtype
|
141 |
+
self.mem_attention_grouping = mem_attention_grouping
|
142 |
+
self.torch_attention = torch_attention
|
143 |
+
self.gradient_checkpoint_every_ith = gradient_checkpoint_every_ith
|
144 |
+
super().__init__(
|
145 |
+
pad_token_id=pad_token_id,
|
146 |
+
bos_token_id=bos_token_id,
|
147 |
+
eos_token_id=eos_token_id,
|
148 |
+
tie_word_embeddings=tie_word_embeddings,
|
149 |
+
**kwargs,
|
150 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.30.0"
|
7 |
+
}
|
longllama_utils.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
from dataclasses import dataclass
|
3 |
+
import torch
|
4 |
+
from typing import Tuple, Optional
|
5 |
+
|
6 |
+
|
7 |
+
@dataclass
|
8 |
+
class LongLlamaMemConfig:
|
9 |
+
"""
|
10 |
+
Class for configuring memory caches for LongLlama model.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
positionals (`boolean`)
|
14 |
+
Whether to use positional embeddings in memory layer
|
15 |
+
cache_dtype (`torch.dtype`)
|
16 |
+
Specifies storing type for keys and values
|
17 |
+
attention_grouping (`Tuple[int, int]`, *optional*)
|
18 |
+
One can trade speed for memory by performing attention
|
19 |
+
in memory layers sequentially.
|
20 |
+
When equal to `(4, 128)` the memory layers will process at most 4 heads and 128 queries
|
21 |
+
from each head at once. That is at most 512 queries at once.
|
22 |
+
"""
|
23 |
+
|
24 |
+
positionals: bool = True
|
25 |
+
cache_dtype: torch.dtype = torch.bfloat16
|
26 |
+
attention_grouping: Optional[Tuple[int, int]] = None
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class LongLlamaMemCache:
|
31 |
+
"""
|
32 |
+
Class with LongLlama's memory cache
|
33 |
+
|
34 |
+
Args:
|
35 |
+
keys (`torch.FloatTensor` of shape `(batch_size, num_heads, mem_length, embed_size_per_head)`)
|
36 |
+
values (`torch.FloatTensor` of shape `(batch_size, num_heads, mem_length, embed_size_per_head)`)
|
37 |
+
masks (`torch.FloatTensor` of shape `(batch_size, 1, mem_length, 1)`)
|
38 |
+
For masking out parts of memory
|
39 |
+
"""
|
40 |
+
|
41 |
+
keys: torch.FloatTensor
|
42 |
+
values: torch.FloatTensor
|
43 |
+
masks: torch.FloatTensor
|
44 |
+
|
45 |
+
|
46 |
+
def mem_apply_update(
|
47 |
+
prev_mem_cache: LongLlamaMemCache, new_mem_content: LongLlamaMemCache, mem_config: LongLlamaMemConfig
|
48 |
+
):
|
49 |
+
def update_one(prev, new):
|
50 |
+
if len(prev.shape) != 4 or len(new.shape) != 4:
|
51 |
+
raise ValueError(f"Memory cache content should be consistent in shape got {prev.shape} {new.shape}")
|
52 |
+
|
53 |
+
return torch.concat([prev, new], dim=-2)
|
54 |
+
|
55 |
+
insert_size = new_mem_content.keys.shape[-2]
|
56 |
+
|
57 |
+
if new_mem_content.values.shape[-2] != insert_size or new_mem_content.masks.shape[-2] != insert_size:
|
58 |
+
raise ValueError(f"Inconsistent mem_length in new_mem_content")
|
59 |
+
|
60 |
+
return LongLlamaMemCache(
|
61 |
+
keys=update_one(prev_mem_cache.keys, new_mem_content.keys),
|
62 |
+
values=update_one(prev_mem_cache.values, new_mem_content.values),
|
63 |
+
masks=update_one(prev_mem_cache.masks, new_mem_content.masks),
|
64 |
+
)
|
modeling_longllama.py
ADDED
@@ -0,0 +1,1455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch LongLLaMA model."""
|
21 |
+
from dataclasses import dataclass
|
22 |
+
import math
|
23 |
+
from typing import List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.modeling_outputs import (
|
32 |
+
BaseModelOutputWithPast,
|
33 |
+
CausalLMOutputWithPast,
|
34 |
+
SequenceClassifierOutputWithPast,
|
35 |
+
)
|
36 |
+
from transformers.modeling_utils import PreTrainedModel
|
37 |
+
from transformers.utils import (
|
38 |
+
add_start_docstrings,
|
39 |
+
add_start_docstrings_to_model_forward,
|
40 |
+
logging,
|
41 |
+
replace_return_docstrings,
|
42 |
+
)
|
43 |
+
from .configuration_longllama import LongLlamaConfig
|
44 |
+
from .longllama_utils import mem_apply_update, LongLlamaMemCache, LongLlamaMemConfig
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
_CONFIG_FOR_DOC = "LongLlamaConfig"
|
50 |
+
|
51 |
+
|
52 |
+
@dataclass
|
53 |
+
class LongLlamaModelOutputWithPast(BaseModelOutputWithPast):
|
54 |
+
"""
|
55 |
+
Based on BaseModelOutputWithPast
|
56 |
+
|
57 |
+
Args:
|
58 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
59 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
60 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
61 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
62 |
+
mem_caches (`tuple(LongLlamaMemCache))`, *optional*, returned for layers with memory cache enabled):
|
63 |
+
For the layers without memory None is returned
|
64 |
+
"""
|
65 |
+
|
66 |
+
mem_caches: Optional[LongLlamaMemCache] = None
|
67 |
+
|
68 |
+
|
69 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
70 |
+
def _make_causal_mask(
|
71 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
72 |
+
):
|
73 |
+
"""
|
74 |
+
Make causal mask used for bi-directional self-attention.
|
75 |
+
"""
|
76 |
+
bsz, tgt_len = input_ids_shape
|
77 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
78 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
79 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
80 |
+
mask = mask.to(dtype)
|
81 |
+
|
82 |
+
if past_key_values_length > 0:
|
83 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
84 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
85 |
+
|
86 |
+
|
87 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
88 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
89 |
+
"""
|
90 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
91 |
+
"""
|
92 |
+
bsz, src_len = mask.size()
|
93 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
94 |
+
|
95 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
96 |
+
|
97 |
+
inverted_mask = 1.0 - expanded_mask
|
98 |
+
|
99 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
100 |
+
|
101 |
+
|
102 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->LongLlama
|
103 |
+
class LongLlamaRMSNorm(nn.Module):
|
104 |
+
def __init__(self, hidden_size, eps=1e-6):
|
105 |
+
"""
|
106 |
+
LongLlamaRMSNorm is equivalent to T5LayerNorm
|
107 |
+
"""
|
108 |
+
super().__init__()
|
109 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
110 |
+
self.variance_epsilon = eps
|
111 |
+
|
112 |
+
def forward(self, hidden_states):
|
113 |
+
input_dtype = hidden_states.dtype
|
114 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
115 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
116 |
+
|
117 |
+
return (self.weight * hidden_states).to(input_dtype)
|
118 |
+
|
119 |
+
|
120 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->LongLlama
|
121 |
+
class LongLlamaRotaryEmbedding(torch.nn.Module):
|
122 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
123 |
+
super().__init__()
|
124 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
125 |
+
self.register_buffer("inv_freq", inv_freq)
|
126 |
+
|
127 |
+
# Build here to make `torch.jit.trace` work.
|
128 |
+
self.max_seq_len_cached = max_position_embeddings
|
129 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
130 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
131 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
132 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
133 |
+
dtype = torch.get_default_dtype()
|
134 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
135 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
136 |
+
|
137 |
+
def forward(self, x, seq_len=None):
|
138 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
139 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
140 |
+
if seq_len > self.max_seq_len_cached:
|
141 |
+
self.max_seq_len_cached = seq_len
|
142 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
143 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
144 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
145 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
146 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False)
|
147 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False)
|
148 |
+
return (
|
149 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
150 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
151 |
+
)
|
152 |
+
|
153 |
+
|
154 |
+
def rotate_half(x):
|
155 |
+
"""Rotates half the hidden dims of the input."""
|
156 |
+
x1 = x[..., : x.shape[-1] // 2]
|
157 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
158 |
+
return torch.cat((-x2, x1), dim=-1)
|
159 |
+
|
160 |
+
|
161 |
+
# Based on transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
162 |
+
def rotate_one(x, cos, sin, position_ids):
|
163 |
+
if len(position_ids.shape) != 2 or x.shape[0] != position_ids.shape[0] or x.shape[-2] != position_ids.shape[1]:
|
164 |
+
raise ValueError(f"Position ids shoud have shape [bsz, seq_len] got {position_ids.shape}")
|
165 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
166 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
167 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
168 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
169 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
170 |
+
x_embed = (x * cos) + (rotate_half(x) * sin)
|
171 |
+
return x_embed
|
172 |
+
|
173 |
+
|
174 |
+
def rotate_as_if_first(x, rotary_emb):
|
175 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
176 |
+
# apply rotary as if all elements were first in the sequence
|
177 |
+
cos, sin = rotary_emb(x, x.shape[-2])
|
178 |
+
return rotate_one(x, cos, sin, torch.zeros(x.shape[0], x.shape[-2], dtype=torch.long, device=cos.device))
|
179 |
+
|
180 |
+
|
181 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaMLP with Llama->LongLlama
|
182 |
+
class LongLlamaMLP(nn.Module):
|
183 |
+
def __init__(
|
184 |
+
self,
|
185 |
+
hidden_size: int,
|
186 |
+
intermediate_size: int,
|
187 |
+
hidden_act: str,
|
188 |
+
):
|
189 |
+
super().__init__()
|
190 |
+
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
191 |
+
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
192 |
+
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
193 |
+
self.act_fn = ACT2FN[hidden_act]
|
194 |
+
|
195 |
+
def forward(self, x):
|
196 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
197 |
+
|
198 |
+
|
199 |
+
# Modified transformers.models.llama.modeling_llama.LlamaAttention
|
200 |
+
class LongLlamaAttention(nn.Module):
|
201 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper with FoT modifications"""
|
202 |
+
|
203 |
+
def __init__(self, config: LongLlamaConfig, mem_config: Optional[LongLlamaMemConfig] = None):
|
204 |
+
super().__init__()
|
205 |
+
self.config = config
|
206 |
+
self.hidden_size = config.hidden_size
|
207 |
+
self.num_heads = config.num_attention_heads
|
208 |
+
self.head_dim = self.hidden_size // self.num_heads
|
209 |
+
self.max_position_embeddings = config.max_position_embeddings
|
210 |
+
self.max_cache = self.max_position_embeddings
|
211 |
+
|
212 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
213 |
+
raise ValueError(
|
214 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
215 |
+
f" and `num_heads`: {self.num_heads})."
|
216 |
+
)
|
217 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
218 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
219 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
220 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
221 |
+
self.rotary_emb = LongLlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
222 |
+
self.mem_config = mem_config
|
223 |
+
|
224 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
225 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
226 |
+
|
227 |
+
def forward(
|
228 |
+
self,
|
229 |
+
hidden_states: torch.Tensor,
|
230 |
+
attention_mask: Optional[torch.Tensor] = None,
|
231 |
+
position_ids: Optional[torch.LongTensor] = None,
|
232 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
233 |
+
output_attentions: bool = False,
|
234 |
+
use_cache: bool = False,
|
235 |
+
mem_cache: Optional[LongLlamaMemCache] = None,
|
236 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
237 |
+
if attention_mask is None:
|
238 |
+
tgt_seq_len = hidden_states.shape[-2]
|
239 |
+
if past_key_value is not None:
|
240 |
+
src_seq_len = past_key_value[0].shape[-2] + tgt_seq_len
|
241 |
+
else:
|
242 |
+
src_seq_len = tgt_seq_len
|
243 |
+
|
244 |
+
attention_mask = torch.zeros(
|
245 |
+
hidden_states.shape[0],
|
246 |
+
1,
|
247 |
+
tgt_seq_len,
|
248 |
+
src_seq_len,
|
249 |
+
device=hidden_states.device,
|
250 |
+
dtype=hidden_states.dtype,
|
251 |
+
)
|
252 |
+
bsz, q_len, _ = hidden_states.size()
|
253 |
+
|
254 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
255 |
+
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
256 |
+
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
257 |
+
position_ids = position_ids[:, None, :, None]
|
258 |
+
|
259 |
+
if position_ids.shape != (key_states.shape[0], 1, key_states.shape[-2], 1):
|
260 |
+
raise ValueError("position_ids should match batch and seq_len of the input")
|
261 |
+
|
262 |
+
mem_no_local_cache = self.mem_config is not None and past_key_value is None and (not use_cache)
|
263 |
+
mem_and_local_cache = self.mem_config is not None and use_cache
|
264 |
+
# positonal embeddings can be disabled for memory layers
|
265 |
+
use_positionals = self.mem_config is None or self.mem_config.positionals
|
266 |
+
|
267 |
+
if mem_no_local_cache:
|
268 |
+
# the whole context window will be moved to memory cache after the attention
|
269 |
+
if use_positionals:
|
270 |
+
# positionally embedd memory content as first token in the sequence
|
271 |
+
rfst_key_states = rotate_as_if_first(key_states, self.rotary_emb)
|
272 |
+
else:
|
273 |
+
rfst_key_states = key_states
|
274 |
+
# attention_mask [bsz, 1, tgt_seq_len, src_seq_len]
|
275 |
+
# we base the mask on the last token in the context window
|
276 |
+
mem_update = LongLlamaMemCache(
|
277 |
+
keys=rfst_key_states.to(self.mem_config.cache_dtype),
|
278 |
+
values=value_states.to(self.mem_config.cache_dtype),
|
279 |
+
masks=attention_mask[..., -1, :, None],
|
280 |
+
)
|
281 |
+
|
282 |
+
if past_key_value is not None:
|
283 |
+
past_local_cache_size = past_key_value[0].shape[-2]
|
284 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=-2)
|
285 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=-2)
|
286 |
+
# FoT additionally stores position_ids to support long inputs
|
287 |
+
position_ids = torch.cat([past_key_value[2], position_ids], dim=-2)
|
288 |
+
|
289 |
+
if attention_mask.shape[-1] != key_states.shape[-2] and attention_mask.shape[-2] != query_states.shape[-2]:
|
290 |
+
raise ValueError("attention_mask should be provided for all key_states in local context")
|
291 |
+
|
292 |
+
# local cache is maintained so that it is <= self.max_cache
|
293 |
+
# remaining elements are either dropped or go to memory cache
|
294 |
+
if key_states.shape[-2] > self.max_cache:
|
295 |
+
num_elems_to_drop = past_local_cache_size
|
296 |
+
|
297 |
+
if mem_and_local_cache:
|
298 |
+
drop_keys = key_states[:, :, :num_elems_to_drop, :]
|
299 |
+
drop_values = value_states[:, :, :num_elems_to_drop, :]
|
300 |
+
# as memory mask use the masking of the last key in context
|
301 |
+
# attention_mask [bsz, 1, tgt_seq_len, src_seq_len]
|
302 |
+
drop_masks = attention_mask[..., -1, :, None]
|
303 |
+
drop_masks = drop_masks[:, :, :num_elems_to_drop, :]
|
304 |
+
|
305 |
+
if use_positionals:
|
306 |
+
rfst_drop_keys = rotate_as_if_first(drop_keys, self.rotary_emb)
|
307 |
+
else:
|
308 |
+
rfst_drop_keys = drop_keys
|
309 |
+
mem_update = LongLlamaMemCache(
|
310 |
+
keys=rfst_drop_keys.to(self.mem_config.cache_dtype),
|
311 |
+
values=drop_values.to(self.mem_config.cache_dtype),
|
312 |
+
masks=drop_masks,
|
313 |
+
)
|
314 |
+
if mem_cache is None:
|
315 |
+
mem_cache = mem_update
|
316 |
+
else:
|
317 |
+
mem_cache = mem_apply_update(
|
318 |
+
prev_mem_cache=mem_cache, new_mem_content=mem_update, mem_config=self.mem_config
|
319 |
+
)
|
320 |
+
|
321 |
+
key_states = key_states[:, :, num_elems_to_drop:, :]
|
322 |
+
value_states = value_states[:, :, num_elems_to_drop:, :]
|
323 |
+
position_ids = position_ids[:, :, num_elems_to_drop:, :]
|
324 |
+
attention_mask = attention_mask[..., num_elems_to_drop:]
|
325 |
+
|
326 |
+
# FoT additionally stores position_ids to support long inputs
|
327 |
+
past_key_value = (key_states, value_states, position_ids) if use_cache else None
|
328 |
+
|
329 |
+
kv_seq_len = key_states.shape[-2]
|
330 |
+
|
331 |
+
if use_positionals:
|
332 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
333 |
+
rel_pos_ids = position_ids - torch.min(position_ids, dim=-2, keepdim=True)[0]
|
334 |
+
rel_pos_ids = rel_pos_ids.squeeze(3).squeeze(1)
|
335 |
+
|
336 |
+
query_states = rotate_one(query_states, cos, sin, rel_pos_ids[:, -query_states.shape[-2] :])
|
337 |
+
key_states = rotate_one(key_states, cos, sin, rel_pos_ids)
|
338 |
+
|
339 |
+
if self.mem_config is not None and self.mem_config.attention_grouping is not None:
|
340 |
+
attn_grouping_h, attn_grouping_q = self.mem_config.attention_grouping
|
341 |
+
if attn_grouping_h <= 0 or attn_grouping_q <= 0:
|
342 |
+
raise ValueError("Attention grouping should be positive")
|
343 |
+
else:
|
344 |
+
attn_grouping_h, attn_grouping_q = self.num_heads, q_len
|
345 |
+
|
346 |
+
attn_output_h = []
|
347 |
+
for beg_h in range(0, self.num_heads, attn_grouping_h):
|
348 |
+
end_h = min(beg_h + attn_grouping_h, self.num_heads)
|
349 |
+
|
350 |
+
attn_output_q = []
|
351 |
+
for beg_q in range(0, q_len, attn_grouping_q):
|
352 |
+
end_q = min(beg_q + attn_grouping_q, q_len)
|
353 |
+
|
354 |
+
if self.config.torch_attention:
|
355 |
+
if mem_cache is not None:
|
356 |
+
attn_keys = torch.concat(
|
357 |
+
[key_states[:, beg_h:end_h], mem_cache.keys[:, beg_h:end_h].to(key_states.dtype)], dim=-2
|
358 |
+
)
|
359 |
+
attn_values = torch.concat(
|
360 |
+
[value_states[:, beg_h:end_h], mem_cache.values[:, beg_h:end_h].to(value_states.dtype)],
|
361 |
+
dim=-2,
|
362 |
+
)
|
363 |
+
mem_mask = mem_cache.masks.squeeze(-1).unsqueeze(-2)
|
364 |
+
assert len(mem_mask.shape) == 4
|
365 |
+
assert mem_mask.shape[2] == 1
|
366 |
+
assert mem_mask.shape[3] == mem_cache.keys.shape[-2]
|
367 |
+
mem_mask = torch.broadcast_to(
|
368 |
+
mem_mask, (mem_mask.shape[0], mem_mask.shape[1], end_q - beg_q, mem_mask.shape[3])
|
369 |
+
)
|
370 |
+
attn_mask = torch.concat([attention_mask[:, :, beg_q:end_q], mem_mask], dim=-1)
|
371 |
+
assert attn_mask.shape[-1] == attn_keys.shape[-2]
|
372 |
+
else:
|
373 |
+
attn_keys = key_states[:, beg_h:end_h]
|
374 |
+
attn_values = value_states[:, beg_h:end_h]
|
375 |
+
attn_mask = attention_mask[:, :, beg_q:end_q]
|
376 |
+
|
377 |
+
attn_queries = query_states[:, beg_h:end_h, beg_q:end_q]
|
378 |
+
|
379 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
380 |
+
query=attn_queries, key=attn_keys, value=attn_values, attn_mask=attn_mask
|
381 |
+
)
|
382 |
+
attn_output_q.append(attn_output)
|
383 |
+
else:
|
384 |
+
attn_weights = torch.matmul(
|
385 |
+
query_states[:, beg_h:end_h, beg_q:end_q], key_states[:, beg_h:end_h].transpose(2, 3)
|
386 |
+
) / math.sqrt(self.head_dim)
|
387 |
+
|
388 |
+
if attn_weights.size() != (bsz, end_h - beg_h, end_q - beg_q, kv_seq_len):
|
389 |
+
raise ValueError(
|
390 |
+
f"Attention weights should be of size {(bsz, end_h - beg_h, end_q - beg_q, kv_seq_len)}, but is"
|
391 |
+
f" {attn_weights.size()}"
|
392 |
+
)
|
393 |
+
|
394 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
395 |
+
raise ValueError(
|
396 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
397 |
+
)
|
398 |
+
attn_weights = attn_weights + attention_mask[:, :, beg_q:end_q]
|
399 |
+
min_value = (
|
400 |
+
torch.finfo(attn_weights.dtype).min
|
401 |
+
if -1000000.0 < torch.finfo(attn_weights.dtype).min
|
402 |
+
else -1000000.0
|
403 |
+
)
|
404 |
+
attn_weights = torch.max(
|
405 |
+
attn_weights, torch.tensor(min_value, device=attn_weights.device, dtype=attn_weights.dtype)
|
406 |
+
)
|
407 |
+
|
408 |
+
if mem_cache is not None:
|
409 |
+
mem_mask = mem_cache.masks.squeeze(-1).unsqueeze(-2)
|
410 |
+
mem_attn_weights = torch.matmul(
|
411 |
+
query_states[:, beg_h:end_h, beg_q:end_q],
|
412 |
+
mem_cache.keys[:, beg_h:end_h].transpose(2, 3).to(key_states.dtype),
|
413 |
+
) / math.sqrt(self.head_dim)
|
414 |
+
|
415 |
+
assert mem_mask.shape[2] == 1
|
416 |
+
mem_attn_weights = mem_attn_weights + mem_mask
|
417 |
+
min_value = (
|
418 |
+
torch.finfo(mem_attn_weights.dtype).min
|
419 |
+
if -1000000.0 < torch.finfo(mem_attn_weights.dtype).min
|
420 |
+
else -1000000.0
|
421 |
+
)
|
422 |
+
mem_attn_weights = torch.max(
|
423 |
+
mem_attn_weights,
|
424 |
+
torch.tensor(min_value, device=mem_attn_weights.device, dtype=mem_attn_weights.dtype),
|
425 |
+
)
|
426 |
+
|
427 |
+
attn_weights = torch.concat([attn_weights, mem_attn_weights], dim=-1)
|
428 |
+
combined_value_states = torch.concat(
|
429 |
+
[value_states[:, beg_h:end_h], mem_cache.values[:, beg_h:end_h].to(value_states.dtype)],
|
430 |
+
dim=-2,
|
431 |
+
)
|
432 |
+
else:
|
433 |
+
combined_value_states = value_states[:, beg_h:end_h]
|
434 |
+
# upcast attention to fp32
|
435 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
|
436 |
+
query_states.dtype
|
437 |
+
)
|
438 |
+
attn_output = torch.matmul(attn_weights, combined_value_states)
|
439 |
+
assert attn_output.shape[-2] == end_q - beg_q
|
440 |
+
attn_output_q.append(attn_output)
|
441 |
+
attn_output_h.append(torch.concat(attn_output_q, dim=-2))
|
442 |
+
|
443 |
+
attn_output = torch.concat(attn_output_h, dim=-3)
|
444 |
+
|
445 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
446 |
+
raise ValueError(
|
447 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
448 |
+
f" {attn_output.size()}"
|
449 |
+
)
|
450 |
+
|
451 |
+
attn_output = attn_output.transpose(1, 2)
|
452 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
453 |
+
|
454 |
+
attn_output = self.o_proj(attn_output)
|
455 |
+
|
456 |
+
if not output_attentions:
|
457 |
+
attn_weights = None
|
458 |
+
|
459 |
+
if mem_no_local_cache:
|
460 |
+
if mem_cache is not None:
|
461 |
+
mem_cache = mem_apply_update(
|
462 |
+
prev_mem_cache=mem_cache, new_mem_content=mem_update, mem_config=self.mem_config
|
463 |
+
)
|
464 |
+
else:
|
465 |
+
mem_cache = mem_update
|
466 |
+
|
467 |
+
return attn_output, attn_weights, past_key_value, mem_cache
|
468 |
+
|
469 |
+
|
470 |
+
# Modified transformers.models.llama.modeling_llama.LlamaDecoderLayer
|
471 |
+
class LongLlamaDecoderLayer(nn.Module):
|
472 |
+
def __init__(self, config: LongLlamaConfig, mem_config: Optional[LongLlamaMemConfig] = None):
|
473 |
+
super().__init__()
|
474 |
+
self.hidden_size = config.hidden_size
|
475 |
+
self.self_attn = LongLlamaAttention(config=config, mem_config=mem_config)
|
476 |
+
self.mlp = LongLlamaMLP(
|
477 |
+
hidden_size=self.hidden_size,
|
478 |
+
intermediate_size=config.intermediate_size,
|
479 |
+
hidden_act=config.hidden_act,
|
480 |
+
)
|
481 |
+
self.input_layernorm = LongLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
482 |
+
self.post_attention_layernorm = LongLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
483 |
+
|
484 |
+
def forward(
|
485 |
+
self,
|
486 |
+
hidden_states: torch.Tensor,
|
487 |
+
attention_mask: Optional[torch.Tensor] = None,
|
488 |
+
position_ids: Optional[torch.LongTensor] = None,
|
489 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
490 |
+
output_attentions: Optional[bool] = False,
|
491 |
+
use_cache: Optional[bool] = False,
|
492 |
+
mem_cache: Optional[LongLlamaMemCache] = None,
|
493 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
494 |
+
"""
|
495 |
+
Args:
|
496 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
497 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
498 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
499 |
+
output_attentions (`bool`, *optional*):
|
500 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
501 |
+
returned tensors for more detail.
|
502 |
+
use_cache (`bool`, *optional*):
|
503 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
504 |
+
(see `past_key_values`).
|
505 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
506 |
+
along with information about positions
|
507 |
+
mem_cache (`LongLlamaMemCache`, *optional*): memory cache for specific layers
|
508 |
+
"""
|
509 |
+
|
510 |
+
residual = hidden_states
|
511 |
+
|
512 |
+
hidden_states = self.input_layernorm(hidden_states)
|
513 |
+
|
514 |
+
# Self Attention
|
515 |
+
hidden_states, self_attn_weights, present_key_value, mem_cache = self.self_attn(
|
516 |
+
hidden_states=hidden_states,
|
517 |
+
attention_mask=attention_mask,
|
518 |
+
position_ids=position_ids,
|
519 |
+
past_key_value=past_key_value,
|
520 |
+
output_attentions=output_attentions,
|
521 |
+
use_cache=use_cache,
|
522 |
+
mem_cache=mem_cache,
|
523 |
+
)
|
524 |
+
hidden_states = residual + hidden_states
|
525 |
+
|
526 |
+
# Fully Connected
|
527 |
+
residual = hidden_states
|
528 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
529 |
+
hidden_states = self.mlp(hidden_states)
|
530 |
+
hidden_states = residual + hidden_states
|
531 |
+
|
532 |
+
outputs = (hidden_states,)
|
533 |
+
|
534 |
+
if output_attentions:
|
535 |
+
outputs += (self_attn_weights,)
|
536 |
+
|
537 |
+
if use_cache:
|
538 |
+
outputs += (present_key_value,)
|
539 |
+
|
540 |
+
return outputs + (mem_cache,)
|
541 |
+
|
542 |
+
|
543 |
+
LONGLLAMA_START_DOCSTRING = r"""
|
544 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
545 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
546 |
+
etc.)
|
547 |
+
|
548 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
549 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
550 |
+
and behavior.
|
551 |
+
|
552 |
+
Parameters:
|
553 |
+
config ([`LongLlamaConfig`]):
|
554 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
555 |
+
load the weights associated with the model, only the configuration. Check out the
|
556 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
557 |
+
"""
|
558 |
+
LONGLLAMA_MEML_DOCSTRING = r"""
|
559 |
+
mem_layers ([`int`], *optional*):
|
560 |
+
Indices of layers to be augmented with memory, if None then parameters from config will be used
|
561 |
+
mem_dtype (`str`, *optional*):
|
562 |
+
Keys and values will be casted to this type for storage.
|
563 |
+
|
564 |
+
"""
|
565 |
+
|
566 |
+
|
567 |
+
@add_start_docstrings(
|
568 |
+
"The bare LongLLaMA Model outputting raw hidden-states without any specific head on top.",
|
569 |
+
LONGLLAMA_START_DOCSTRING,
|
570 |
+
)
|
571 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->LongLlama
|
572 |
+
class LongLlamaPreTrainedModel(PreTrainedModel):
|
573 |
+
config_class = LongLlamaConfig
|
574 |
+
base_model_prefix = "model"
|
575 |
+
supports_gradient_checkpointing = True
|
576 |
+
_no_split_modules = ["LongLlamaDecoderLayer"]
|
577 |
+
_skip_keys_device_placement = "past_key_values"
|
578 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
579 |
+
|
580 |
+
def _init_weights(self, module):
|
581 |
+
std = self.config.initializer_range
|
582 |
+
if isinstance(module, nn.Linear):
|
583 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
584 |
+
if module.bias is not None:
|
585 |
+
module.bias.data.zero_()
|
586 |
+
elif isinstance(module, nn.Embedding):
|
587 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
588 |
+
if module.padding_idx is not None:
|
589 |
+
module.weight.data[module.padding_idx].zero_()
|
590 |
+
|
591 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
592 |
+
if isinstance(module, LongLlamaModel):
|
593 |
+
module.gradient_checkpointing = value
|
594 |
+
|
595 |
+
|
596 |
+
LONGLLAMA_COMMON_INPUTS_DOCSTRING = r"""
|
597 |
+
Args:
|
598 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
599 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
600 |
+
it.
|
601 |
+
|
602 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
603 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
604 |
+
|
605 |
+
[What are input IDs?](../glossary#input-ids)
|
606 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
607 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
608 |
+
|
609 |
+
- 1 for tokens that are **not masked**,
|
610 |
+
- 0 for tokens that are **masked**.
|
611 |
+
|
612 |
+
[What are attention masks?](../glossary#attention-mask)
|
613 |
+
|
614 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
615 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
616 |
+
|
617 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
618 |
+
`past_key_values`).
|
619 |
+
|
620 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
621 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
622 |
+
information on the default strategy.
|
623 |
+
|
624 |
+
- 1 indicates the head is **not masked**,
|
625 |
+
- 0 indicates the head is **masked**.
|
626 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
627 |
+
Indices of positions of each input sequence tokens in the position embeddings.
|
628 |
+
|
629 |
+
[What are position IDs?](../glossary#position-ids)
|
630 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`
|
631 |
+
or memory cache is enabled):
|
632 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
633 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 1 additional tensor of shape
|
634 |
+
`(batch_size, 1, sequence_length, 1)`. For memory enriched layers it also contains content of memory cache.
|
635 |
+
It is padded with empty tensors so when returned it alwyas has 6 elements.
|
636 |
+
|
637 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks)
|
638 |
+
that can be used (see `past_key_values` input) to speed up sequential decoding.
|
639 |
+
|
640 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
641 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
642 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
643 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
644 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
645 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
646 |
+
model's internal embedding lookup matrix.
|
647 |
+
use_cache (`bool`, *optional*):
|
648 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
649 |
+
`past_key_values`).
|
650 |
+
output_attentions (`bool`, *optional*):
|
651 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
652 |
+
tensors for more detail. This is NOT supported in LongLlamaForCausalLM and LongLlamaForSequenceClassification
|
653 |
+
due to the specific input processing.
|
654 |
+
output_hidden_states (`bool`, *optional*):
|
655 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
656 |
+
more detail.
|
657 |
+
return_dict (`bool`, *optional*):
|
658 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
659 |
+
"""
|
660 |
+
LONGLLAMA_MODEL_INPUTS_DOCSTRING = r"""
|
661 |
+
mem_caches (`tuple(LongLlamaMemCache)`, *optional*)
|
662 |
+
Memory caches for specified layers, None for others
|
663 |
+
"""
|
664 |
+
|
665 |
+
LONGLLAMA_ADD_INPUTS_DOCSTRING = r"""
|
666 |
+
last_context_length (`int`, *optional*)
|
667 |
+
Useful for generation, specifies number of tokens that won't be loaded to memory and
|
668 |
+
will be left for generation cache
|
669 |
+
"""
|
670 |
+
|
671 |
+
|
672 |
+
def _prepare_pos_ids(past_key_values, batch_size, input_length, device):
|
673 |
+
if past_key_values is not None:
|
674 |
+
# take previous max pos_id + 1
|
675 |
+
if past_key_values[0][2].shape[0] != batch_size:
|
676 |
+
raise ValueError(
|
677 |
+
f"first dimension of past_key_values should match batch size: {batch_size}"
|
678 |
+
f"but got {past_key_values[0][2].shape[0]}"
|
679 |
+
)
|
680 |
+
next_pos = torch.max(past_key_values[0][2].view(batch_size, -1), dim=-1)[0] + 1
|
681 |
+
next_pos = next_pos.view(batch_size, 1)
|
682 |
+
else:
|
683 |
+
next_pos = torch.zeros(batch_size, 1, device=device, dtype=torch.long)
|
684 |
+
|
685 |
+
position_ids = torch.arange(0, input_length, dtype=torch.long, device=device).view(1, input_length)
|
686 |
+
position_ids = position_ids + next_pos
|
687 |
+
return position_ids
|
688 |
+
|
689 |
+
|
690 |
+
@add_start_docstrings(
|
691 |
+
"The bare LongLLaMA Model outputting raw hidden-states without any specific head on top.",
|
692 |
+
LONGLLAMA_START_DOCSTRING,
|
693 |
+
LONGLLAMA_MEML_DOCSTRING,
|
694 |
+
)
|
695 |
+
# Modified transformers.models.llama.modeling_llama.LlamaModel
|
696 |
+
class LongLlamaModel(LongLlamaPreTrainedModel):
|
697 |
+
"""
|
698 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LongLlamaDecoderLayer`]
|
699 |
+
|
700 |
+
Args:
|
701 |
+
config: LlamaConfig
|
702 |
+
"""
|
703 |
+
|
704 |
+
def __init__(self, config: LongLlamaConfig):
|
705 |
+
super().__init__(config)
|
706 |
+
self.mem_layers = config.mem_layers
|
707 |
+
self.mem_config = LongLlamaMemConfig(
|
708 |
+
positionals=config.mem_positionals,
|
709 |
+
cache_dtype=getattr(torch, config.mem_dtype),
|
710 |
+
attention_grouping=config.mem_attention_grouping,
|
711 |
+
)
|
712 |
+
self.padding_idx = config.pad_token_id
|
713 |
+
self.vocab_size = config.vocab_size
|
714 |
+
|
715 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
716 |
+
|
717 |
+
for mem_layer_id in self.mem_layers:
|
718 |
+
if mem_layer_id < 0 or mem_layer_id >= config.num_hidden_layers:
|
719 |
+
raise ValueError(
|
720 |
+
f"Memory layer ids should be between 0 and {config.num_hidden_layers}, got {mem_layer_id}"
|
721 |
+
)
|
722 |
+
|
723 |
+
layers = []
|
724 |
+
for layer_id in range(config.num_hidden_layers):
|
725 |
+
if layer_id in self.mem_layers:
|
726 |
+
layer = LongLlamaDecoderLayer(config, mem_config=self.mem_config)
|
727 |
+
else:
|
728 |
+
layer = LongLlamaDecoderLayer(config, mem_config=None)
|
729 |
+
layers.append(layer)
|
730 |
+
|
731 |
+
self.layers = nn.ModuleList(layers)
|
732 |
+
self.norm = LongLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
733 |
+
|
734 |
+
self.gradient_checkpointing = False
|
735 |
+
|
736 |
+
# Initialize weights and apply final processing
|
737 |
+
self.post_init()
|
738 |
+
|
739 |
+
def get_input_embeddings(self):
|
740 |
+
return self.embed_tokens
|
741 |
+
|
742 |
+
def set_input_embeddings(self, value):
|
743 |
+
self.embed_tokens = value
|
744 |
+
|
745 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
746 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
747 |
+
# create causal mask
|
748 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
749 |
+
combined_attention_mask = None
|
750 |
+
if input_shape[-1] > 1:
|
751 |
+
combined_attention_mask = _make_causal_mask(
|
752 |
+
input_shape,
|
753 |
+
inputs_embeds.dtype,
|
754 |
+
device=inputs_embeds.device,
|
755 |
+
past_key_values_length=past_key_values_length,
|
756 |
+
)
|
757 |
+
|
758 |
+
if attention_mask is not None:
|
759 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
760 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
761 |
+
inputs_embeds.device
|
762 |
+
)
|
763 |
+
combined_attention_mask = (
|
764 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
765 |
+
)
|
766 |
+
|
767 |
+
return combined_attention_mask
|
768 |
+
|
769 |
+
@add_start_docstrings_to_model_forward(LONGLLAMA_COMMON_INPUTS_DOCSTRING, LONGLLAMA_MODEL_INPUTS_DOCSTRING)
|
770 |
+
def forward(
|
771 |
+
self,
|
772 |
+
input_ids: torch.LongTensor = None,
|
773 |
+
attention_mask: Optional[torch.Tensor] = None,
|
774 |
+
position_ids: Optional[torch.LongTensor] = None,
|
775 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
776 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
777 |
+
use_cache: Optional[bool] = None,
|
778 |
+
output_attentions: Optional[bool] = None,
|
779 |
+
output_hidden_states: Optional[bool] = None,
|
780 |
+
return_dict: Optional[bool] = None,
|
781 |
+
mem_caches: Optional[Tuple[Optional[LongLlamaMemCache]]] = None,
|
782 |
+
) -> Union[Tuple, LongLlamaModelOutputWithPast]:
|
783 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
784 |
+
output_hidden_states = (
|
785 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
786 |
+
)
|
787 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
788 |
+
|
789 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
790 |
+
|
791 |
+
# retrieve input_ids and inputs_embeds
|
792 |
+
if input_ids is not None and inputs_embeds is not None:
|
793 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
794 |
+
elif input_ids is not None:
|
795 |
+
batch_size, seq_length = input_ids.shape
|
796 |
+
elif inputs_embeds is not None:
|
797 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
798 |
+
else:
|
799 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
800 |
+
|
801 |
+
seq_length_with_past = seq_length
|
802 |
+
past_key_values_length = 0
|
803 |
+
|
804 |
+
if past_key_values is not None:
|
805 |
+
past_key_values_length = past_key_values[0][0].shape[-2]
|
806 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
807 |
+
|
808 |
+
if position_ids is None:
|
809 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
810 |
+
position_ids = _prepare_pos_ids(past_key_values, batch_size, seq_length, device)
|
811 |
+
else:
|
812 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
813 |
+
|
814 |
+
if inputs_embeds is None:
|
815 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
816 |
+
# embed positions
|
817 |
+
if attention_mask is None:
|
818 |
+
attention_mask = torch.ones(
|
819 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
820 |
+
)
|
821 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
822 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
823 |
+
)
|
824 |
+
|
825 |
+
hidden_states = inputs_embeds
|
826 |
+
|
827 |
+
if self.gradient_checkpointing and self.training:
|
828 |
+
if use_cache:
|
829 |
+
logger.warning_once(
|
830 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
831 |
+
)
|
832 |
+
use_cache = False
|
833 |
+
|
834 |
+
# decoder layers
|
835 |
+
all_hidden_states = () if output_hidden_states else None
|
836 |
+
all_self_attns = () if output_attentions else None
|
837 |
+
next_decoder_cache = ()
|
838 |
+
next_mem_caches = ()
|
839 |
+
for idx, decoder_layer in enumerate(self.layers):
|
840 |
+
if output_hidden_states:
|
841 |
+
all_hidden_states += (hidden_states,)
|
842 |
+
|
843 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
844 |
+
mem_cache = mem_caches[idx] if mem_caches else None
|
845 |
+
|
846 |
+
if mem_cache is not None and idx not in self.mem_layers:
|
847 |
+
raise ValueError("Memory cache provided for a non-memory leayer")
|
848 |
+
|
849 |
+
if (
|
850 |
+
self.gradient_checkpointing
|
851 |
+
and self.training
|
852 |
+
and mem_cache is None
|
853 |
+
and idx % self.config.gradient_checkpoint_every_ith == 0
|
854 |
+
):
|
855 |
+
|
856 |
+
def create_custom_forward(module):
|
857 |
+
def custom_forward(*inputs):
|
858 |
+
# None for past_key_value
|
859 |
+
return module(*inputs, output_attentions, None, mem_cache=None)
|
860 |
+
|
861 |
+
return custom_forward
|
862 |
+
|
863 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
864 |
+
create_custom_forward(decoder_layer),
|
865 |
+
hidden_states,
|
866 |
+
attention_mask,
|
867 |
+
position_ids,
|
868 |
+
None,
|
869 |
+
)
|
870 |
+
else:
|
871 |
+
layer_outputs = decoder_layer(
|
872 |
+
hidden_states,
|
873 |
+
attention_mask=attention_mask,
|
874 |
+
position_ids=position_ids,
|
875 |
+
past_key_value=past_key_value,
|
876 |
+
output_attentions=output_attentions,
|
877 |
+
use_cache=use_cache,
|
878 |
+
mem_cache=mem_cache,
|
879 |
+
)
|
880 |
+
|
881 |
+
new_mem_cache = layer_outputs[-1]
|
882 |
+
layer_outputs = layer_outputs[:-1]
|
883 |
+
next_mem_caches += (new_mem_cache,)
|
884 |
+
|
885 |
+
hidden_states = layer_outputs[0]
|
886 |
+
|
887 |
+
if use_cache:
|
888 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
889 |
+
else:
|
890 |
+
next_decoder_cache += (None,)
|
891 |
+
|
892 |
+
if output_attentions:
|
893 |
+
all_self_attns += (layer_outputs[1],)
|
894 |
+
|
895 |
+
hidden_states = self.norm(hidden_states)
|
896 |
+
|
897 |
+
# add hidden states from the last decoder layer
|
898 |
+
if output_hidden_states:
|
899 |
+
all_hidden_states += (hidden_states,)
|
900 |
+
|
901 |
+
next_cache = next_decoder_cache if use_cache else None
|
902 |
+
|
903 |
+
mem_cache_returned = False
|
904 |
+
for mem_cache in next_mem_caches:
|
905 |
+
if mem_cache is not None:
|
906 |
+
mem_cache_returned = True
|
907 |
+
next_mem_caches = next_mem_caches if mem_cache_returned else None
|
908 |
+
|
909 |
+
if not return_dict:
|
910 |
+
return tuple(
|
911 |
+
v
|
912 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, next_mem_caches]
|
913 |
+
if v is not None
|
914 |
+
)
|
915 |
+
return LongLlamaModelOutputWithPast(
|
916 |
+
last_hidden_state=hidden_states,
|
917 |
+
past_key_values=next_cache,
|
918 |
+
hidden_states=all_hidden_states,
|
919 |
+
attentions=all_self_attns,
|
920 |
+
mem_caches=next_mem_caches,
|
921 |
+
)
|
922 |
+
|
923 |
+
|
924 |
+
def _handle_output_of_past_key_values(outputs):
|
925 |
+
# merges local caches and memory caches into one single tuple of past_key_values
|
926 |
+
# in order to support generation
|
927 |
+
batch_size = outputs.last_hidden_state.shape[0]
|
928 |
+
if outputs.past_key_values is None and outputs.mem_caches is None:
|
929 |
+
return None
|
930 |
+
|
931 |
+
if outputs.past_key_values is None:
|
932 |
+
out_past_key_values = (None,) * len(outputs.mem_caches)
|
933 |
+
else:
|
934 |
+
out_past_key_values = outputs.past_key_values
|
935 |
+
|
936 |
+
if outputs.mem_caches is None:
|
937 |
+
out_mem_caches = (None,) * len(outputs.past_key_values)
|
938 |
+
else:
|
939 |
+
out_mem_caches = outputs.mem_caches
|
940 |
+
|
941 |
+
device = outputs.last_hidden_state.device
|
942 |
+
past_key_values = ()
|
943 |
+
for local_cache, mem_cache in zip(out_past_key_values, out_mem_caches):
|
944 |
+
layer = ()
|
945 |
+
if local_cache is not None:
|
946 |
+
assert len(local_cache) == 3
|
947 |
+
layer += local_cache
|
948 |
+
else:
|
949 |
+
layer += (torch.empty(batch_size, 0, 0, 0, device=device),) * 3
|
950 |
+
|
951 |
+
if mem_cache is not None:
|
952 |
+
layer += (mem_cache.keys, mem_cache.values, mem_cache.masks)
|
953 |
+
else:
|
954 |
+
layer += (torch.empty(batch_size, 0, 0, 0, device=device),) * 3
|
955 |
+
|
956 |
+
assert len(layer) == 6
|
957 |
+
|
958 |
+
past_key_values += (layer,)
|
959 |
+
|
960 |
+
return past_key_values
|
961 |
+
|
962 |
+
|
963 |
+
def _split_past_key_values(past_key_values):
|
964 |
+
# splits past_key_values to local cache and memory cache
|
965 |
+
local_cache_preset = False
|
966 |
+
mem_caches_present = False
|
967 |
+
if past_key_values is not None:
|
968 |
+
local_caches = ()
|
969 |
+
mem_caches = ()
|
970 |
+
for layer in past_key_values:
|
971 |
+
if len(layer) != 6:
|
972 |
+
raise ValueError(
|
973 |
+
"Expected elements of past_key_values to contain 6 elements."
|
974 |
+
"First 3 describing local cache and last 3 describing memory cache."
|
975 |
+
f"Instead got {len(layer)} elements"
|
976 |
+
)
|
977 |
+
else:
|
978 |
+
lk, lv, li, memk, memv, memm = layer
|
979 |
+
if lk.shape[-2] != 0:
|
980 |
+
local_cache_preset = True
|
981 |
+
local_caches += ((lk, lv, li),)
|
982 |
+
else:
|
983 |
+
local_caches += (None,)
|
984 |
+
|
985 |
+
if memk.shape[-2] != 0:
|
986 |
+
mem_caches_present = True
|
987 |
+
mem_caches += (LongLlamaMemCache(keys=memk, values=memv, masks=memm),)
|
988 |
+
else:
|
989 |
+
mem_caches += (None,)
|
990 |
+
|
991 |
+
local_caches = local_caches if local_cache_preset else None
|
992 |
+
mem_caches = mem_caches if mem_caches_present else None
|
993 |
+
|
994 |
+
return local_caches, mem_caches
|
995 |
+
|
996 |
+
|
997 |
+
def _handle_long_input(
|
998 |
+
model,
|
999 |
+
input_ids,
|
1000 |
+
attention_mask,
|
1001 |
+
position_ids,
|
1002 |
+
past_key_values,
|
1003 |
+
inputs_embeds,
|
1004 |
+
use_cache,
|
1005 |
+
output_attentions,
|
1006 |
+
output_hidden_states,
|
1007 |
+
return_dict,
|
1008 |
+
context_window_length,
|
1009 |
+
last_context_length,
|
1010 |
+
):
|
1011 |
+
if output_attentions:
|
1012 |
+
logger.warning(
|
1013 |
+
f"Outputing attentions is not supported in LongLlamaForCausalLM and LongLlamaForSequenceClassification. "
|
1014 |
+
f"Attention of the last window will be returned"
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
past_key_values, mem_caches = _split_past_key_values(past_key_values)
|
1018 |
+
|
1019 |
+
if past_key_values is not None and use_cache is False:
|
1020 |
+
raise ValueError("past_key_values it not None should imply use_cache == True")
|
1021 |
+
|
1022 |
+
if past_key_values is not None:
|
1023 |
+
initial_past_key_values_length = past_key_values[0][0].shape[-2]
|
1024 |
+
else:
|
1025 |
+
initial_past_key_values_length = 0
|
1026 |
+
|
1027 |
+
if input_ids is not None:
|
1028 |
+
batch_size, input_length = input_ids.shape
|
1029 |
+
else:
|
1030 |
+
batch_size, input_length, _ = inputs_embeds.shape
|
1031 |
+
|
1032 |
+
if position_ids is None:
|
1033 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1034 |
+
position_ids = _prepare_pos_ids(past_key_values, batch_size, input_length, device)
|
1035 |
+
|
1036 |
+
if position_ids.shape != (batch_size, input_length):
|
1037 |
+
raise ValueError(f"Shape of position_ids [{position_ids}] should match [{batch_size, input_length}]")
|
1038 |
+
|
1039 |
+
if attention_mask is not None:
|
1040 |
+
attention_mask = attention_mask[..., -(initial_past_key_values_length + input_length) :]
|
1041 |
+
if attention_mask is not None and (
|
1042 |
+
attention_mask.shape != (batch_size, initial_past_key_values_length + input_length)
|
1043 |
+
):
|
1044 |
+
raise ValueError(
|
1045 |
+
"Attention mask should be provided for both the local cache and the input",
|
1046 |
+
f"Expected shape {(batch_size, initial_past_key_values_length + input_length)},"
|
1047 |
+
f"got {attention_mask.shape}.",
|
1048 |
+
)
|
1049 |
+
|
1050 |
+
# First we load prefix to memory cache
|
1051 |
+
mem_input_length = max(input_length - last_context_length, 0)
|
1052 |
+
outputs_list = []
|
1053 |
+
attn_offset = initial_past_key_values_length
|
1054 |
+
if mem_input_length > 0:
|
1055 |
+
for i in range(0, mem_input_length, context_window_length):
|
1056 |
+
beg, end = i, min(mem_input_length, i + context_window_length)
|
1057 |
+
|
1058 |
+
if attention_mask is not None:
|
1059 |
+
if past_key_values is not None:
|
1060 |
+
local_cache_size = past_key_values[0][0].shape[-2]
|
1061 |
+
else:
|
1062 |
+
local_cache_size = 0
|
1063 |
+
attn_length = attention_mask.shape[-1]
|
1064 |
+
attn_beg = beg + attn_offset - local_cache_size
|
1065 |
+
attn_end = end + attn_offset
|
1066 |
+
assert attn_end <= attn_length
|
1067 |
+
assert attn_beg >= 0 and attn_end > attn_beg
|
1068 |
+
|
1069 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn, mem_caches)
|
1070 |
+
outputs = model(
|
1071 |
+
input_ids=input_ids[..., beg:end] if input_ids is not None else None,
|
1072 |
+
attention_mask=attention_mask[..., attn_beg:attn_end] if attention_mask is not None else None,
|
1073 |
+
position_ids=position_ids[..., beg:end],
|
1074 |
+
past_key_values=past_key_values,
|
1075 |
+
inputs_embeds=inputs_embeds[..., beg:end, :] if inputs_embeds is not None else None,
|
1076 |
+
use_cache=False if past_key_values is None else use_cache,
|
1077 |
+
output_attentions=output_attentions,
|
1078 |
+
output_hidden_states=output_hidden_states,
|
1079 |
+
return_dict=True,
|
1080 |
+
mem_caches=mem_caches,
|
1081 |
+
)
|
1082 |
+
if i > 0:
|
1083 |
+
if mem_caches is not None and past_key_values is None:
|
1084 |
+
for mc_layer in mem_caches:
|
1085 |
+
if mc_layer is not None:
|
1086 |
+
del mc_layer.keys
|
1087 |
+
del mc_layer.values
|
1088 |
+
del mc_layer.masks
|
1089 |
+
|
1090 |
+
mem_caches = outputs.mem_caches
|
1091 |
+
outputs.mem_caches = None
|
1092 |
+
past_key_values = outputs.past_key_values
|
1093 |
+
outputs.past_key_values = None
|
1094 |
+
outputs_list.append(outputs)
|
1095 |
+
|
1096 |
+
remaining_input_length = input_length - mem_input_length
|
1097 |
+
beg = mem_input_length
|
1098 |
+
attn_length = remaining_input_length
|
1099 |
+
if past_key_values is not None:
|
1100 |
+
attn_length += past_key_values[0][0].shape[-2]
|
1101 |
+
attention_mask = attention_mask[..., -attn_length:] if attention_mask is not None else None
|
1102 |
+
|
1103 |
+
outputs = model(
|
1104 |
+
input_ids=input_ids[..., beg:] if input_ids is not None else None,
|
1105 |
+
attention_mask=attention_mask,
|
1106 |
+
position_ids=position_ids[..., beg:],
|
1107 |
+
past_key_values=past_key_values,
|
1108 |
+
inputs_embeds=inputs_embeds[..., beg:, :] if inputs_embeds is not None else None,
|
1109 |
+
use_cache=use_cache,
|
1110 |
+
output_attentions=output_attentions,
|
1111 |
+
output_hidden_states=output_hidden_states,
|
1112 |
+
return_dict=True,
|
1113 |
+
mem_caches=mem_caches,
|
1114 |
+
)
|
1115 |
+
|
1116 |
+
outputs_list.append(outputs)
|
1117 |
+
|
1118 |
+
past_key_values = _handle_output_of_past_key_values(outputs_list[-1])
|
1119 |
+
|
1120 |
+
if output_hidden_states:
|
1121 |
+
hidden_states = ()
|
1122 |
+
for hd in zip(*[x.hidden_states for x in outputs_list]):
|
1123 |
+
hidden_states += (torch.cat(hd, dim=-2),)
|
1124 |
+
else:
|
1125 |
+
hidden_states = None
|
1126 |
+
|
1127 |
+
outputs = BaseModelOutputWithPast(
|
1128 |
+
last_hidden_state=torch.concat([x.last_hidden_state for x in outputs_list], dim=-2),
|
1129 |
+
past_key_values=past_key_values,
|
1130 |
+
hidden_states=hidden_states,
|
1131 |
+
attentions=outputs_list[-1].attentions,
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
if not return_dict:
|
1135 |
+
outputs = tuple(
|
1136 |
+
v
|
1137 |
+
for v in [outputs.last_hidden_state, outputs.past_key_values, outputs.hidden_states, outputs.attentions]
|
1138 |
+
if v is not None
|
1139 |
+
)
|
1140 |
+
return outputs
|
1141 |
+
|
1142 |
+
|
1143 |
+
# Modified transformers.models.llama.modeling_llama.LlamaForCausalLM
|
1144 |
+
class LongLlamaForCausalLM(LongLlamaPreTrainedModel):
|
1145 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1146 |
+
|
1147 |
+
def __init__(self, config):
|
1148 |
+
super().__init__(config)
|
1149 |
+
self.context_window_length = config.max_position_embeddings
|
1150 |
+
|
1151 |
+
self.model = LongLlamaModel(config)
|
1152 |
+
|
1153 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1154 |
+
|
1155 |
+
# Initialize weights and apply final processing
|
1156 |
+
self.post_init()
|
1157 |
+
|
1158 |
+
def get_input_embeddings(self):
|
1159 |
+
return self.model.embed_tokens
|
1160 |
+
|
1161 |
+
def set_input_embeddings(self, value):
|
1162 |
+
self.model.embed_tokens = value
|
1163 |
+
|
1164 |
+
def get_output_embeddings(self):
|
1165 |
+
return self.lm_head
|
1166 |
+
|
1167 |
+
def set_output_embeddings(self, new_embeddings):
|
1168 |
+
self.lm_head = new_embeddings
|
1169 |
+
|
1170 |
+
def set_decoder(self, decoder):
|
1171 |
+
self.model = decoder
|
1172 |
+
|
1173 |
+
def get_decoder(self):
|
1174 |
+
return self.model
|
1175 |
+
|
1176 |
+
def _has_generation_cache(self, past_key_values):
|
1177 |
+
if past_key_values is not None:
|
1178 |
+
assert len(past_key_values[0]) == 6
|
1179 |
+
return past_key_values[0][0].shape[-2] != 0
|
1180 |
+
|
1181 |
+
return False
|
1182 |
+
|
1183 |
+
@add_start_docstrings_to_model_forward(LONGLLAMA_COMMON_INPUTS_DOCSTRING, LONGLLAMA_ADD_INPUTS_DOCSTRING)
|
1184 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1185 |
+
def forward(
|
1186 |
+
self,
|
1187 |
+
input_ids: torch.LongTensor = None,
|
1188 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1189 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1190 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1191 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1192 |
+
labels: Optional[torch.LongTensor] = None,
|
1193 |
+
use_cache: Optional[bool] = None,
|
1194 |
+
output_attentions: Optional[bool] = None,
|
1195 |
+
output_hidden_states: Optional[bool] = None,
|
1196 |
+
return_dict: Optional[bool] = None,
|
1197 |
+
last_context_length: Optional[int] = None,
|
1198 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1199 |
+
r"""
|
1200 |
+
Args:
|
1201 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1202 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1203 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1204 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1205 |
+
|
1206 |
+
Returns:
|
1207 |
+
|
1208 |
+
Example:
|
1209 |
+
|
1210 |
+
```python
|
1211 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
1212 |
+
|
1213 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1214 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1215 |
+
|
1216 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1217 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1218 |
+
|
1219 |
+
>>> # Generate
|
1220 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1221 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1222 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1223 |
+
```"""
|
1224 |
+
last_context_length = (
|
1225 |
+
last_context_length if last_context_length is not None else self.config.last_context_length
|
1226 |
+
)
|
1227 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1228 |
+
output_hidden_states = (
|
1229 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1230 |
+
)
|
1231 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1232 |
+
|
1233 |
+
outputs = _handle_long_input(
|
1234 |
+
model=self.model,
|
1235 |
+
input_ids=input_ids,
|
1236 |
+
attention_mask=attention_mask,
|
1237 |
+
position_ids=position_ids,
|
1238 |
+
past_key_values=past_key_values,
|
1239 |
+
inputs_embeds=inputs_embeds,
|
1240 |
+
use_cache=use_cache,
|
1241 |
+
output_attentions=output_attentions,
|
1242 |
+
output_hidden_states=output_hidden_states,
|
1243 |
+
return_dict=return_dict,
|
1244 |
+
context_window_length=self.context_window_length,
|
1245 |
+
last_context_length=last_context_length,
|
1246 |
+
)
|
1247 |
+
|
1248 |
+
hidden_states = outputs[0]
|
1249 |
+
logits = self.lm_head(hidden_states)
|
1250 |
+
|
1251 |
+
loss = None
|
1252 |
+
if labels is not None:
|
1253 |
+
# Shift so that tokens < n predict n
|
1254 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1255 |
+
shift_labels = labels[..., 1:].contiguous()
|
1256 |
+
# Flatten the tokens
|
1257 |
+
loss_fct = CrossEntropyLoss()
|
1258 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1259 |
+
shift_labels = shift_labels.view(-1)
|
1260 |
+
# Enable model parallelism
|
1261 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1262 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1263 |
+
|
1264 |
+
if not return_dict:
|
1265 |
+
output = (logits,) + outputs[1:]
|
1266 |
+
return (loss,) + output if loss is not None else output
|
1267 |
+
|
1268 |
+
return CausalLMOutputWithPast(
|
1269 |
+
loss=loss,
|
1270 |
+
logits=logits,
|
1271 |
+
past_key_values=outputs.past_key_values,
|
1272 |
+
hidden_states=outputs.hidden_states,
|
1273 |
+
attentions=outputs.attentions,
|
1274 |
+
)
|
1275 |
+
|
1276 |
+
def prepare_inputs_for_generation(
|
1277 |
+
self,
|
1278 |
+
input_ids,
|
1279 |
+
past_key_values=None,
|
1280 |
+
attention_mask=None,
|
1281 |
+
inputs_embeds=None,
|
1282 |
+
last_context_length=None,
|
1283 |
+
**kwargs,
|
1284 |
+
):
|
1285 |
+
if self._has_generation_cache(past_key_values):
|
1286 |
+
input_ids = input_ids[:, -1:]
|
1287 |
+
|
1288 |
+
position_ids = kwargs.get("position_ids", None)
|
1289 |
+
if attention_mask is not None and position_ids is None:
|
1290 |
+
# create position_ids on the fly for batch generation
|
1291 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1292 |
+
position_ids.masked_fill(position_ids < 0, 0)
|
1293 |
+
if self._has_generation_cache(past_key_values):
|
1294 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1295 |
+
|
1296 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1297 |
+
if inputs_embeds is not None and past_key_values is None:
|
1298 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1299 |
+
else:
|
1300 |
+
model_inputs = {"input_ids": input_ids}
|
1301 |
+
|
1302 |
+
model_inputs.update(
|
1303 |
+
{
|
1304 |
+
"position_ids": position_ids,
|
1305 |
+
"past_key_values": past_key_values,
|
1306 |
+
"use_cache": kwargs.get("use_cache"),
|
1307 |
+
"attention_mask": attention_mask,
|
1308 |
+
"last_context_length": last_context_length,
|
1309 |
+
}
|
1310 |
+
)
|
1311 |
+
return model_inputs
|
1312 |
+
|
1313 |
+
@staticmethod
|
1314 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1315 |
+
reordered_past = ()
|
1316 |
+
for layer_past in past_key_values:
|
1317 |
+
reordered_past += (
|
1318 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1319 |
+
)
|
1320 |
+
return reordered_past
|
1321 |
+
|
1322 |
+
|
1323 |
+
@add_start_docstrings(
|
1324 |
+
"""
|
1325 |
+
The LongLLaMA Model transformer with a sequence classification head on top (linear layer).
|
1326 |
+
|
1327 |
+
[`LongLlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1328 |
+
(e.g. GPT-2) do.
|
1329 |
+
|
1330 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1331 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1332 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1333 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1334 |
+
each row of the batch).
|
1335 |
+
""",
|
1336 |
+
LONGLLAMA_START_DOCSTRING,
|
1337 |
+
LONGLLAMA_MEML_DOCSTRING,
|
1338 |
+
)
|
1339 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaForSequenceClassification
|
1340 |
+
class LongLlamaForSequenceClassification(LongLlamaPreTrainedModel):
|
1341 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
1342 |
+
|
1343 |
+
def __init__(self, config):
|
1344 |
+
super().__init__(config)
|
1345 |
+
self.num_labels = config.num_labels
|
1346 |
+
self.context_window_length = config.max_position_embeddings
|
1347 |
+
self.model = LongLlamaModel(config)
|
1348 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1349 |
+
|
1350 |
+
# Initialize weights and apply final processing
|
1351 |
+
self.post_init()
|
1352 |
+
|
1353 |
+
def get_input_embeddings(self):
|
1354 |
+
return self.model.embed_tokens
|
1355 |
+
|
1356 |
+
def set_input_embeddings(self, value):
|
1357 |
+
self.model.embed_tokens = value
|
1358 |
+
|
1359 |
+
@add_start_docstrings_to_model_forward(LONGLLAMA_COMMON_INPUTS_DOCSTRING, LONGLLAMA_ADD_INPUTS_DOCSTRING)
|
1360 |
+
def forward(
|
1361 |
+
self,
|
1362 |
+
input_ids: torch.LongTensor = None,
|
1363 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1364 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1365 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1366 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1367 |
+
labels: Optional[torch.LongTensor] = None,
|
1368 |
+
use_cache: Optional[bool] = None,
|
1369 |
+
output_attentions: Optional[bool] = None,
|
1370 |
+
output_hidden_states: Optional[bool] = None,
|
1371 |
+
return_dict: Optional[bool] = None,
|
1372 |
+
last_context_length: Optional[int] = None,
|
1373 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1374 |
+
r"""
|
1375 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1376 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1377 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1378 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1379 |
+
"""
|
1380 |
+
last_context_length = (
|
1381 |
+
last_context_length if last_context_length is not None else self.config.last_context_length
|
1382 |
+
)
|
1383 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1384 |
+
output_hidden_states = (
|
1385 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1386 |
+
)
|
1387 |
+
transformer_outputs = _handle_long_input(
|
1388 |
+
model=self.model,
|
1389 |
+
input_ids=input_ids,
|
1390 |
+
attention_mask=attention_mask,
|
1391 |
+
position_ids=position_ids,
|
1392 |
+
past_key_values=past_key_values,
|
1393 |
+
inputs_embeds=inputs_embeds,
|
1394 |
+
use_cache=use_cache,
|
1395 |
+
output_attentions=output_attentions,
|
1396 |
+
output_hidden_states=output_hidden_states,
|
1397 |
+
return_dict=return_dict,
|
1398 |
+
context_window_length=self.context_window_length,
|
1399 |
+
last_context_length=last_context_length,
|
1400 |
+
)
|
1401 |
+
|
1402 |
+
hidden_states = transformer_outputs[0]
|
1403 |
+
logits = self.score(hidden_states)
|
1404 |
+
|
1405 |
+
if input_ids is not None:
|
1406 |
+
batch_size = input_ids.shape[0]
|
1407 |
+
else:
|
1408 |
+
batch_size = inputs_embeds.shape[0]
|
1409 |
+
|
1410 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1411 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1412 |
+
if self.config.pad_token_id is None:
|
1413 |
+
sequence_lengths = -1
|
1414 |
+
else:
|
1415 |
+
if input_ids is not None:
|
1416 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
1417 |
+
else:
|
1418 |
+
sequence_lengths = -1
|
1419 |
+
|
1420 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1421 |
+
|
1422 |
+
loss = None
|
1423 |
+
if labels is not None:
|
1424 |
+
labels = labels.to(logits.device)
|
1425 |
+
if self.config.problem_type is None:
|
1426 |
+
if self.num_labels == 1:
|
1427 |
+
self.config.problem_type = "regression"
|
1428 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1429 |
+
self.config.problem_type = "single_label_classification"
|
1430 |
+
else:
|
1431 |
+
self.config.problem_type = "multi_label_classification"
|
1432 |
+
|
1433 |
+
if self.config.problem_type == "regression":
|
1434 |
+
loss_fct = MSELoss()
|
1435 |
+
if self.num_labels == 1:
|
1436 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1437 |
+
else:
|
1438 |
+
loss = loss_fct(pooled_logits, labels)
|
1439 |
+
elif self.config.problem_type == "single_label_classification":
|
1440 |
+
loss_fct = CrossEntropyLoss()
|
1441 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1442 |
+
elif self.config.problem_type == "multi_label_classification":
|
1443 |
+
loss_fct = BCEWithLogitsLoss()
|
1444 |
+
loss = loss_fct(pooled_logits, labels)
|
1445 |
+
if not return_dict:
|
1446 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1447 |
+
return ((loss,) + output) if loss is not None else output
|
1448 |
+
|
1449 |
+
return SequenceClassifierOutputWithPast(
|
1450 |
+
loss=loss,
|
1451 |
+
logits=pooled_logits,
|
1452 |
+
past_key_values=transformer_outputs.past_key_values,
|
1453 |
+
hidden_states=transformer_outputs.hidden_states,
|
1454 |
+
attentions=transformer_outputs.attentions,
|
1455 |
+
)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09bafe701c16bd4e05139d38d203c7bcfc79de2537f2b1168236f4258488818b
|
3 |
+
size 6853038093
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": {"content": "<s>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "eos_token": {"content": "</s>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "unk_token": {"content": "<unk>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
|
3 |
+
size 511574
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "", "eos_token": {"__type": "AddedToken", "content": "</s>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "model_max_length": 1000000000000000019884624838656, "tokenizer_class": "LlamaTokenizer", "unk_token": {"__type": "AddedToken", "content": "<unk>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "add_bos_token": true, "add_eos_token": false, "pad_token": null, "sp_model_kwargs": {}, "clean_up_tokenization_spaces": {"__type": "AddedToken", "content": "<s>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}}
|