|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch LongLLaMA model.""" |
|
from dataclasses import dataclass |
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_longllama import LongLlamaConfig |
|
from .longllama_utils import mem_apply_update, LongLlamaMemCache, LongLlamaMemConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "LongLlamaConfig" |
|
|
|
|
|
@dataclass |
|
class LongLlamaModelOutputWithPast(BaseModelOutputWithPast): |
|
""" |
|
Based on BaseModelOutputWithPast |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
mem_caches (`tuple(LongLlamaMemCache))`, *optional*, returned for layers with memory cache enabled): |
|
For the layers without memory None is returned |
|
""" |
|
|
|
mem_caches: Optional[LongLlamaMemCache] = None |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
|
|
class LongLlamaRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
LongLlamaRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
return (self.weight * hidden_states).to(input_dtype) |
|
|
|
|
|
|
|
class LongLlamaRotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
|
|
self.max_seq_len_cached = max_position_embeddings |
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
dtype = torch.get_default_dtype() |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False) |
|
return ( |
|
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
def rotate_one(x, cos, sin, position_ids): |
|
if len(position_ids.shape) != 2 or x.shape[0] != position_ids.shape[0] or x.shape[-2] != position_ids.shape[1]: |
|
raise ValueError(f"Position ids shoud have shape [bsz, seq_len] got {position_ids.shape}") |
|
|
|
cos = cos.squeeze(1).squeeze(0) |
|
sin = sin.squeeze(1).squeeze(0) |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
x_embed = (x * cos) + (rotate_half(x) * sin) |
|
return x_embed |
|
|
|
|
|
def rotate_as_if_first(x, rotary_emb): |
|
|
|
|
|
cos, sin = rotary_emb(x, x.shape[-2]) |
|
return rotate_one(x, cos, sin, torch.zeros(x.shape[0], x.shape[-2], dtype=torch.long, device=cos.device)) |
|
|
|
|
|
|
|
class LongLlamaMLP(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
): |
|
super().__init__() |
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) |
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
|
|
class LongLlamaAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper with FoT modifications""" |
|
|
|
def __init__(self, config: LongLlamaConfig, mem_config: Optional[LongLlamaMemConfig] = None): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.max_cache = self.max_position_embeddings |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
self.rotary_emb = LongLlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings) |
|
self.mem_config = mem_config |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
mem_cache: Optional[LongLlamaMemCache] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if attention_mask is None: |
|
tgt_seq_len = hidden_states.shape[-2] |
|
if past_key_value is not None: |
|
src_seq_len = past_key_value[0].shape[-2] + tgt_seq_len |
|
else: |
|
src_seq_len = tgt_seq_len |
|
|
|
attention_mask = torch.zeros( |
|
hidden_states.shape[0], |
|
1, |
|
tgt_seq_len, |
|
src_seq_len, |
|
device=hidden_states.device, |
|
dtype=hidden_states.dtype, |
|
) |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
position_ids = position_ids[:, None, :, None] |
|
|
|
if position_ids.shape != (key_states.shape[0], 1, key_states.shape[-2], 1): |
|
raise ValueError("position_ids should match batch and seq_len of the input") |
|
|
|
mem_no_local_cache = self.mem_config is not None and past_key_value is None and (not use_cache) |
|
mem_and_local_cache = self.mem_config is not None and use_cache |
|
|
|
use_positionals = self.mem_config is None or self.mem_config.positionals |
|
|
|
if mem_no_local_cache: |
|
|
|
if use_positionals: |
|
|
|
rfst_key_states = rotate_as_if_first(key_states, self.rotary_emb) |
|
else: |
|
rfst_key_states = key_states |
|
|
|
|
|
mem_update = LongLlamaMemCache( |
|
keys=rfst_key_states.to(self.mem_config.cache_dtype), |
|
values=value_states.to(self.mem_config.cache_dtype), |
|
masks=attention_mask[..., -1, :, None], |
|
) |
|
|
|
if past_key_value is not None: |
|
past_local_cache_size = past_key_value[0].shape[-2] |
|
key_states = torch.cat([past_key_value[0], key_states], dim=-2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=-2) |
|
|
|
position_ids = torch.cat([past_key_value[2], position_ids], dim=-2) |
|
|
|
if attention_mask.shape[-1] != key_states.shape[-2] and attention_mask.shape[-2] != query_states.shape[-2]: |
|
raise ValueError("attention_mask should be provided for all key_states in local context") |
|
|
|
|
|
|
|
if key_states.shape[-2] > self.max_cache: |
|
num_elems_to_drop = past_local_cache_size |
|
|
|
if mem_and_local_cache: |
|
drop_keys = key_states[:, :, :num_elems_to_drop, :] |
|
drop_values = value_states[:, :, :num_elems_to_drop, :] |
|
|
|
|
|
drop_masks = attention_mask[..., -1, :, None] |
|
drop_masks = drop_masks[:, :, :num_elems_to_drop, :] |
|
|
|
if use_positionals: |
|
rfst_drop_keys = rotate_as_if_first(drop_keys, self.rotary_emb) |
|
else: |
|
rfst_drop_keys = drop_keys |
|
mem_update = LongLlamaMemCache( |
|
keys=rfst_drop_keys.to(self.mem_config.cache_dtype), |
|
values=drop_values.to(self.mem_config.cache_dtype), |
|
masks=drop_masks, |
|
) |
|
if mem_cache is None: |
|
mem_cache = mem_update |
|
else: |
|
mem_cache = mem_apply_update( |
|
prev_mem_cache=mem_cache, new_mem_content=mem_update, mem_config=self.mem_config |
|
) |
|
|
|
key_states = key_states[:, :, num_elems_to_drop:, :] |
|
value_states = value_states[:, :, num_elems_to_drop:, :] |
|
position_ids = position_ids[:, :, num_elems_to_drop:, :] |
|
attention_mask = attention_mask[..., num_elems_to_drop:] |
|
|
|
|
|
past_key_value = (key_states, value_states, position_ids) if use_cache else None |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
|
|
if use_positionals: |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
rel_pos_ids = position_ids - torch.min(position_ids, dim=-2, keepdim=True)[0] |
|
rel_pos_ids = rel_pos_ids.squeeze(3).squeeze(1) |
|
|
|
query_states = rotate_one(query_states, cos, sin, rel_pos_ids[:, -query_states.shape[-2] :]) |
|
key_states = rotate_one(key_states, cos, sin, rel_pos_ids) |
|
|
|
if self.mem_config is not None and self.mem_config.attention_grouping is not None: |
|
attn_grouping_h, attn_grouping_q = self.mem_config.attention_grouping |
|
if attn_grouping_h <= 0 or attn_grouping_q <= 0: |
|
raise ValueError("Attention grouping should be positive") |
|
else: |
|
attn_grouping_h, attn_grouping_q = self.num_heads, q_len |
|
|
|
attn_output_h = [] |
|
for beg_h in range(0, self.num_heads, attn_grouping_h): |
|
end_h = min(beg_h + attn_grouping_h, self.num_heads) |
|
|
|
attn_output_q = [] |
|
for beg_q in range(0, q_len, attn_grouping_q): |
|
end_q = min(beg_q + attn_grouping_q, q_len) |
|
|
|
if self.config.torch_attention: |
|
if mem_cache is not None: |
|
attn_keys = torch.concat( |
|
[key_states[:, beg_h:end_h], mem_cache.keys[:, beg_h:end_h].to(key_states.dtype)], dim=-2 |
|
) |
|
attn_values = torch.concat( |
|
[value_states[:, beg_h:end_h], mem_cache.values[:, beg_h:end_h].to(value_states.dtype)], |
|
dim=-2, |
|
) |
|
mem_mask = mem_cache.masks.squeeze(-1).unsqueeze(-2) |
|
assert len(mem_mask.shape) == 4 |
|
assert mem_mask.shape[2] == 1 |
|
assert mem_mask.shape[3] == mem_cache.keys.shape[-2] |
|
mem_mask = torch.broadcast_to( |
|
mem_mask, (mem_mask.shape[0], mem_mask.shape[1], end_q - beg_q, mem_mask.shape[3]) |
|
) |
|
attn_mask = torch.concat([attention_mask[:, :, beg_q:end_q], mem_mask], dim=-1) |
|
assert attn_mask.shape[-1] == attn_keys.shape[-2] |
|
else: |
|
attn_keys = key_states[:, beg_h:end_h] |
|
attn_values = value_states[:, beg_h:end_h] |
|
attn_mask = attention_mask[:, :, beg_q:end_q] |
|
|
|
attn_queries = query_states[:, beg_h:end_h, beg_q:end_q] |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query=attn_queries, key=attn_keys, value=attn_values, attn_mask=attn_mask |
|
) |
|
attn_output_q.append(attn_output) |
|
else: |
|
attn_weights = torch.matmul( |
|
query_states[:, beg_h:end_h, beg_q:end_q], key_states[:, beg_h:end_h].transpose(2, 3) |
|
) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, end_h - beg_h, end_q - beg_q, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, end_h - beg_h, end_q - beg_q, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask[:, :, beg_q:end_q] |
|
min_value = ( |
|
torch.finfo(attn_weights.dtype).min |
|
if -1000000.0 < torch.finfo(attn_weights.dtype).min |
|
else -1000000.0 |
|
) |
|
attn_weights = torch.max( |
|
attn_weights, torch.tensor(min_value, device=attn_weights.device, dtype=attn_weights.dtype) |
|
) |
|
|
|
if mem_cache is not None: |
|
mem_mask = mem_cache.masks.squeeze(-1).unsqueeze(-2) |
|
mem_attn_weights = torch.matmul( |
|
query_states[:, beg_h:end_h, beg_q:end_q], |
|
mem_cache.keys[:, beg_h:end_h].transpose(2, 3).to(key_states.dtype), |
|
) / math.sqrt(self.head_dim) |
|
|
|
assert mem_mask.shape[2] == 1 |
|
mem_attn_weights = mem_attn_weights + mem_mask |
|
min_value = ( |
|
torch.finfo(mem_attn_weights.dtype).min |
|
if -1000000.0 < torch.finfo(mem_attn_weights.dtype).min |
|
else -1000000.0 |
|
) |
|
mem_attn_weights = torch.max( |
|
mem_attn_weights, |
|
torch.tensor(min_value, device=mem_attn_weights.device, dtype=mem_attn_weights.dtype), |
|
) |
|
|
|
attn_weights = torch.concat([attn_weights, mem_attn_weights], dim=-1) |
|
combined_value_states = torch.concat( |
|
[value_states[:, beg_h:end_h], mem_cache.values[:, beg_h:end_h].to(value_states.dtype)], |
|
dim=-2, |
|
) |
|
else: |
|
combined_value_states = value_states[:, beg_h:end_h] |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to( |
|
query_states.dtype |
|
) |
|
attn_output = torch.matmul(attn_weights, combined_value_states) |
|
assert attn_output.shape[-2] == end_q - beg_q |
|
attn_output_q.append(attn_output) |
|
attn_output_h.append(torch.concat(attn_output_q, dim=-2)) |
|
|
|
attn_output = torch.concat(attn_output_h, dim=-3) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2) |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
if mem_no_local_cache: |
|
if mem_cache is not None: |
|
mem_cache = mem_apply_update( |
|
prev_mem_cache=mem_cache, new_mem_content=mem_update, mem_config=self.mem_config |
|
) |
|
else: |
|
mem_cache = mem_update |
|
|
|
return attn_output, attn_weights, past_key_value, mem_cache |
|
|
|
|
|
|
|
class LongLlamaDecoderLayer(nn.Module): |
|
def __init__(self, config: LongLlamaConfig, mem_config: Optional[LongLlamaMemConfig] = None): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = LongLlamaAttention(config=config, mem_config=mem_config) |
|
self.mlp = LongLlamaMLP( |
|
hidden_size=self.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
) |
|
self.input_layernorm = LongLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = LongLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
mem_cache: Optional[LongLlamaMemCache] = None, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
along with information about positions |
|
mem_cache (`LongLlamaMemCache`, *optional*): memory cache for specific layers |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value, mem_cache = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
mem_cache=mem_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs + (mem_cache,) |
|
|
|
|
|
LONGLLAMA_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`LongLlamaConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
LONGLLAMA_MEML_DOCSTRING = r""" |
|
mem_layers ([`int`], *optional*): |
|
Indices of layers to be augmented with memory, if None then parameters from config will be used |
|
mem_dtype (`str`, *optional*): |
|
Keys and values will be casted to this type for storage. |
|
|
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LongLLaMA Model outputting raw hidden-states without any specific head on top.", |
|
LONGLLAMA_START_DOCSTRING, |
|
) |
|
|
|
class LongLlamaPreTrainedModel(PreTrainedModel): |
|
config_class = LongLlamaConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["LongLlamaDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, LongLlamaModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
LONGLLAMA_COMMON_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True` |
|
or memory cache is enabled): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 1 additional tensor of shape |
|
`(batch_size, 1, sequence_length, 1)`. For memory enriched layers it also contains content of memory cache. |
|
It is padded with empty tensors so when returned it alwyas has 6 elements. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) |
|
that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. This is NOT supported in LongLlamaForCausalLM and LongLlamaForSequenceClassification |
|
due to the specific input processing. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
LONGLLAMA_MODEL_INPUTS_DOCSTRING = r""" |
|
mem_caches (`tuple(LongLlamaMemCache)`, *optional*) |
|
Memory caches for specified layers, None for others |
|
""" |
|
|
|
LONGLLAMA_ADD_INPUTS_DOCSTRING = r""" |
|
last_context_length (`int`, *optional*) |
|
Useful for generation, specifies number of tokens that won't be loaded to memory and |
|
will be left for generation cache |
|
""" |
|
|
|
|
|
def _prepare_pos_ids(past_key_values, batch_size, input_length, device): |
|
if past_key_values is not None: |
|
|
|
if past_key_values[0][2].shape[0] != batch_size: |
|
raise ValueError( |
|
f"first dimension of past_key_values should match batch size: {batch_size}" |
|
f"but got {past_key_values[0][2].shape[0]}" |
|
) |
|
next_pos = torch.max(past_key_values[0][2].view(batch_size, -1), dim=-1)[0] + 1 |
|
next_pos = next_pos.view(batch_size, 1) |
|
else: |
|
next_pos = torch.zeros(batch_size, 1, device=device, dtype=torch.long) |
|
|
|
position_ids = torch.arange(0, input_length, dtype=torch.long, device=device).view(1, input_length) |
|
position_ids = position_ids + next_pos |
|
return position_ids |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LongLLaMA Model outputting raw hidden-states without any specific head on top.", |
|
LONGLLAMA_START_DOCSTRING, |
|
LONGLLAMA_MEML_DOCSTRING, |
|
) |
|
|
|
class LongLlamaModel(LongLlamaPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LongLlamaDecoderLayer`] |
|
|
|
Args: |
|
config: LlamaConfig |
|
""" |
|
|
|
def __init__(self, config: LongLlamaConfig): |
|
super().__init__(config) |
|
self.mem_layers = config.mem_layers |
|
self.mem_config = LongLlamaMemConfig( |
|
positionals=config.mem_positionals, |
|
cache_dtype=getattr(torch, config.mem_dtype), |
|
attention_grouping=config.mem_attention_grouping, |
|
) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
|
for mem_layer_id in self.mem_layers: |
|
if mem_layer_id < 0 or mem_layer_id >= config.num_hidden_layers: |
|
raise ValueError( |
|
f"Memory layer ids should be between 0 and {config.num_hidden_layers}, got {mem_layer_id}" |
|
) |
|
|
|
layers = [] |
|
for layer_id in range(config.num_hidden_layers): |
|
if layer_id in self.mem_layers: |
|
layer = LongLlamaDecoderLayer(config, mem_config=self.mem_config) |
|
else: |
|
layer = LongLlamaDecoderLayer(config, mem_config=None) |
|
layers.append(layer) |
|
|
|
self.layers = nn.ModuleList(layers) |
|
self.norm = LongLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
@add_start_docstrings_to_model_forward(LONGLLAMA_COMMON_INPUTS_DOCSTRING, LONGLLAMA_MODEL_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
mem_caches: Optional[Tuple[Optional[LongLlamaMemCache]]] = None, |
|
) -> Union[Tuple, LongLlamaModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[-2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = _prepare_pos_ids(past_key_values, batch_size, seq_length, device) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () |
|
next_mem_caches = () |
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
mem_cache = mem_caches[idx] if mem_caches else None |
|
|
|
if mem_cache is not None and idx not in self.mem_layers: |
|
raise ValueError("Memory cache provided for a non-memory leayer") |
|
|
|
if ( |
|
self.gradient_checkpointing |
|
and self.training |
|
and mem_cache is None |
|
and idx % self.config.gradient_checkpoint_every_ith == 0 |
|
): |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None, mem_cache=None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
mem_cache=mem_cache, |
|
) |
|
|
|
new_mem_cache = layer_outputs[-1] |
|
layer_outputs = layer_outputs[:-1] |
|
next_mem_caches += (new_mem_cache,) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
else: |
|
next_decoder_cache += (None,) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
|
mem_cache_returned = False |
|
for mem_cache in next_mem_caches: |
|
if mem_cache is not None: |
|
mem_cache_returned = True |
|
next_mem_caches = next_mem_caches if mem_cache_returned else None |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, next_mem_caches] |
|
if v is not None |
|
) |
|
return LongLlamaModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
mem_caches=next_mem_caches, |
|
) |
|
|
|
|
|
def _handle_output_of_past_key_values(outputs): |
|
|
|
|
|
batch_size = outputs.last_hidden_state.shape[0] |
|
if outputs.past_key_values is None and outputs.mem_caches is None: |
|
return None |
|
|
|
if outputs.past_key_values is None: |
|
out_past_key_values = (None,) * len(outputs.mem_caches) |
|
else: |
|
out_past_key_values = outputs.past_key_values |
|
|
|
if outputs.mem_caches is None: |
|
out_mem_caches = (None,) * len(outputs.past_key_values) |
|
else: |
|
out_mem_caches = outputs.mem_caches |
|
|
|
device = outputs.last_hidden_state.device |
|
past_key_values = () |
|
for local_cache, mem_cache in zip(out_past_key_values, out_mem_caches): |
|
layer = () |
|
if local_cache is not None: |
|
assert len(local_cache) == 3 |
|
layer += local_cache |
|
else: |
|
layer += (torch.empty(batch_size, 0, 0, 0, device=device),) * 3 |
|
|
|
if mem_cache is not None: |
|
layer += (mem_cache.keys, mem_cache.values, mem_cache.masks) |
|
else: |
|
layer += (torch.empty(batch_size, 0, 0, 0, device=device),) * 3 |
|
|
|
assert len(layer) == 6 |
|
|
|
past_key_values += (layer,) |
|
|
|
return past_key_values |
|
|
|
|
|
def _split_past_key_values(past_key_values): |
|
|
|
local_cache_preset = False |
|
mem_caches_present = False |
|
if past_key_values is not None: |
|
local_caches = () |
|
mem_caches = () |
|
for layer in past_key_values: |
|
if len(layer) != 6: |
|
raise ValueError( |
|
"Expected elements of past_key_values to contain 6 elements." |
|
"First 3 describing local cache and last 3 describing memory cache." |
|
f"Instead got {len(layer)} elements" |
|
) |
|
else: |
|
lk, lv, li, memk, memv, memm = layer |
|
if lk.shape[-2] != 0: |
|
local_cache_preset = True |
|
local_caches += ((lk, lv, li),) |
|
else: |
|
local_caches += (None,) |
|
|
|
if memk.shape[-2] != 0: |
|
mem_caches_present = True |
|
mem_caches += (LongLlamaMemCache(keys=memk, values=memv, masks=memm),) |
|
else: |
|
mem_caches += (None,) |
|
|
|
local_caches = local_caches if local_cache_preset else None |
|
mem_caches = mem_caches if mem_caches_present else None |
|
|
|
return local_caches, mem_caches |
|
|
|
|
|
def _handle_long_input( |
|
model, |
|
input_ids, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
inputs_embeds, |
|
use_cache, |
|
output_attentions, |
|
output_hidden_states, |
|
return_dict, |
|
context_window_length, |
|
last_context_length, |
|
): |
|
if output_attentions: |
|
logger.warning( |
|
f"Outputing attentions is not supported in LongLlamaForCausalLM and LongLlamaForSequenceClassification. " |
|
f"Attention of the last window will be returned" |
|
) |
|
|
|
past_key_values, mem_caches = _split_past_key_values(past_key_values) |
|
|
|
if past_key_values is not None and use_cache is False: |
|
raise ValueError("past_key_values it not None should imply use_cache == True") |
|
|
|
if past_key_values is not None: |
|
initial_past_key_values_length = past_key_values[0][0].shape[-2] |
|
else: |
|
initial_past_key_values_length = 0 |
|
|
|
if input_ids is not None: |
|
batch_size, input_length = input_ids.shape |
|
else: |
|
batch_size, input_length, _ = inputs_embeds.shape |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = _prepare_pos_ids(past_key_values, batch_size, input_length, device) |
|
|
|
if position_ids.shape != (batch_size, input_length): |
|
raise ValueError(f"Shape of position_ids [{position_ids}] should match [{batch_size, input_length}]") |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask[..., -(initial_past_key_values_length + input_length) :] |
|
if attention_mask is not None and ( |
|
attention_mask.shape != (batch_size, initial_past_key_values_length + input_length) |
|
): |
|
raise ValueError( |
|
"Attention mask should be provided for both the local cache and the input", |
|
f"Expected shape {(batch_size, initial_past_key_values_length + input_length)}," |
|
f"got {attention_mask.shape}.", |
|
) |
|
|
|
|
|
mem_input_length = max(input_length - last_context_length, 0) |
|
outputs_list = [] |
|
attn_offset = initial_past_key_values_length |
|
if mem_input_length > 0: |
|
for i in range(0, mem_input_length, context_window_length): |
|
beg, end = i, min(mem_input_length, i + context_window_length) |
|
|
|
if attention_mask is not None: |
|
if past_key_values is not None: |
|
local_cache_size = past_key_values[0][0].shape[-2] |
|
else: |
|
local_cache_size = 0 |
|
attn_length = attention_mask.shape[-1] |
|
attn_beg = beg + attn_offset - local_cache_size |
|
attn_end = end + attn_offset |
|
assert attn_end <= attn_length |
|
assert attn_beg >= 0 and attn_end > attn_beg |
|
|
|
|
|
outputs = model( |
|
input_ids=input_ids[..., beg:end] if input_ids is not None else None, |
|
attention_mask=attention_mask[..., attn_beg:attn_end] if attention_mask is not None else None, |
|
position_ids=position_ids[..., beg:end], |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds[..., beg:end, :] if inputs_embeds is not None else None, |
|
use_cache=False if past_key_values is None else use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=True, |
|
mem_caches=mem_caches, |
|
) |
|
if i > 0: |
|
if mem_caches is not None and past_key_values is None: |
|
for mc_layer in mem_caches: |
|
if mc_layer is not None: |
|
del mc_layer.keys |
|
del mc_layer.values |
|
del mc_layer.masks |
|
|
|
mem_caches = outputs.mem_caches |
|
outputs.mem_caches = None |
|
past_key_values = outputs.past_key_values |
|
outputs.past_key_values = None |
|
outputs_list.append(outputs) |
|
|
|
remaining_input_length = input_length - mem_input_length |
|
beg = mem_input_length |
|
attn_length = remaining_input_length |
|
if past_key_values is not None: |
|
attn_length += past_key_values[0][0].shape[-2] |
|
attention_mask = attention_mask[..., -attn_length:] if attention_mask is not None else None |
|
|
|
outputs = model( |
|
input_ids=input_ids[..., beg:] if input_ids is not None else None, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids[..., beg:], |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds[..., beg:, :] if inputs_embeds is not None else None, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=True, |
|
mem_caches=mem_caches, |
|
) |
|
|
|
outputs_list.append(outputs) |
|
|
|
past_key_values = _handle_output_of_past_key_values(outputs_list[-1]) |
|
|
|
if output_hidden_states: |
|
hidden_states = () |
|
for hd in zip(*[x.hidden_states for x in outputs_list]): |
|
hidden_states += (torch.cat(hd, dim=-2),) |
|
else: |
|
hidden_states = None |
|
|
|
outputs = BaseModelOutputWithPast( |
|
last_hidden_state=torch.concat([x.last_hidden_state for x in outputs_list], dim=-2), |
|
past_key_values=past_key_values, |
|
hidden_states=hidden_states, |
|
attentions=outputs_list[-1].attentions, |
|
) |
|
|
|
if not return_dict: |
|
outputs = tuple( |
|
v |
|
for v in [outputs.last_hidden_state, outputs.past_key_values, outputs.hidden_states, outputs.attentions] |
|
if v is not None |
|
) |
|
return outputs |
|
|
|
|
|
|
|
class LongLlamaForCausalLM(LongLlamaPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.context_window_length = config.max_position_embeddings |
|
|
|
self.model = LongLlamaModel(config) |
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def _has_generation_cache(self, past_key_values): |
|
if past_key_values is not None: |
|
assert len(past_key_values[0]) == 6 |
|
return past_key_values[0][0].shape[-2] != 0 |
|
|
|
return False |
|
|
|
@add_start_docstrings_to_model_forward(LONGLLAMA_COMMON_INPUTS_DOCSTRING, LONGLLAMA_ADD_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
last_context_length: Optional[int] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, LlamaForCausalLM |
|
|
|
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
last_context_length = ( |
|
last_context_length if last_context_length is not None else self.config.last_context_length |
|
) |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = _handle_long_input( |
|
model=self.model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
context_window_length=self.context_window_length, |
|
last_context_length=last_context_length, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
last_context_length=None, |
|
**kwargs, |
|
): |
|
if self._has_generation_cache(past_key_values): |
|
input_ids = input_ids[:, -1:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill(position_ids < 0, 0) |
|
if self._has_generation_cache(past_key_values): |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"last_context_length": last_context_length, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The LongLLaMA Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`LongLlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
LONGLLAMA_START_DOCSTRING, |
|
LONGLLAMA_MEML_DOCSTRING, |
|
) |
|
|
|
class LongLlamaForSequenceClassification(LongLlamaPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.context_window_length = config.max_position_embeddings |
|
self.model = LongLlamaModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(LONGLLAMA_COMMON_INPUTS_DOCSTRING, LONGLLAMA_ADD_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
last_context_length: Optional[int] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
last_context_length = ( |
|
last_context_length if last_context_length is not None else self.config.last_context_length |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
transformer_outputs = _handle_long_input( |
|
model=self.model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
context_window_length=self.context_window_length, |
|
last_context_length=last_context_length, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|