syubraj's picture
syubraj/espanyol_bert_based_ner
52cde40 verified
|
raw
history blame
3.43 kB
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
  - generated_from_trainer
model-index:
  - name: fine_tune_bert_output
    results: []

fine_tune_bert_output

This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3320
  • Overall Precision: 0.9051
  • Overall Recall: 0.9121
  • Overall F1: 0.9086
  • Overall Accuracy: 0.9577
  • Loc F1: 0.9190
  • Org F1: 0.8663
  • Per F1: 0.9367

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy Loc F1 Org F1 Per F1
0.2713 0.8 1000 0.2236 0.8498 0.8672 0.8584 0.9401 0.8834 0.8019 0.8790
0.1537 1.6 2000 0.1909 0.8772 0.8943 0.8857 0.9495 0.9002 0.8369 0.9164
0.1152 2.4 3000 0.2095 0.8848 0.8981 0.8914 0.9523 0.9039 0.8432 0.9220
0.0889 3.2 4000 0.2223 0.8978 0.8998 0.8988 0.9546 0.9080 0.8569 0.9290
0.0701 4.0 5000 0.2152 0.8937 0.9042 0.8989 0.9544 0.9113 0.8565 0.9246
0.0457 4.8 6000 0.2365 0.9017 0.9069 0.9043 0.9563 0.9164 0.8616 0.9310
0.0364 5.6 7000 0.2622 0.9037 0.9086 0.9061 0.9578 0.9148 0.8639 0.9365
0.026 6.4 8000 0.2916 0.9037 0.9159 0.9097 0.9585 0.9183 0.8712 0.9366
0.0215 7.2 9000 0.2985 0.9022 0.9128 0.9074 0.9565 0.9178 0.8676 0.9323
0.0134 8.0 10000 0.3071 0.904 0.9131 0.9085 0.9574 0.9198 0.8671 0.9344
0.0091 8.8 11000 0.3335 0.9056 0.9115 0.9085 0.9573 0.9175 0.8670 0.9373
0.0074 9.6 12000 0.3320 0.9051 0.9121 0.9086 0.9577 0.9190 0.8663 0.9367

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1