|
--- |
|
language: |
|
- hi |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
model-index: |
|
- name: Whisper Small ko-Yfreq - syp1229 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small ko-Yfreq - syp1229 |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aihub Y dialogue dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.5884 |
|
- Cer: 0.8501 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 5.7567 | 0.3 | 100 | 6.1420 | 0.9849 | |
|
| 5.5645 | 0.59 | 200 | 5.7215 | 0.9903 | |
|
| 5.1849 | 0.89 | 300 | 5.3951 | 0.9170 | |
|
| 5.0416 | 1.18 | 400 | 5.3100 | 0.8497 | |
|
| 4.5767 | 1.48 | 500 | 5.0656 | 0.9404 | |
|
| 4.6818 | 1.78 | 600 | 5.0057 | 0.8237 | |
|
| 4.4227 | 2.07 | 700 | 4.9162 | 0.8776 | |
|
| 4.3057 | 2.37 | 800 | 4.8226 | 0.8212 | |
|
| 4.3631 | 2.66 | 900 | 4.7700 | 0.8636 | |
|
| 4.1999 | 2.96 | 1000 | 4.6969 | 0.8476 | |
|
| 4.0789 | 3.25 | 1100 | 4.7653 | 0.9222 | |
|
| 4.1997 | 3.55 | 1200 | 4.6345 | 0.8642 | |
|
| 3.8299 | 3.85 | 1300 | 4.6444 | 0.8282 | |
|
| 3.6904 | 4.14 | 1400 | 4.6633 | 0.8451 | |
|
| 3.7531 | 4.44 | 1500 | 4.6527 | 0.9382 | |
|
| 3.8045 | 4.73 | 1600 | 4.5884 | 0.8501 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|