string2-string / README.md
bruce-syntag's picture
Add BERTopic model
3cb03ca
metadata
tags:
  - bertopic
library_name: bertopic
pipeline_tag: text-classification

string2-string

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("syntag/string2-string")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 4
  • Number of training documents: 20
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
0 life - make - adulting - worm - gives 7 0_life_make_adulting_worm
1 like - bar - walk - matter - coding 7 1_like_bar_walk_matter
2 break - version - vacation - told - succeed 3 2_break_version_vacation_told
3 don - skeletons - shame - scientists - parallel 3 3_don_skeletons_shame_scientists

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False

Framework versions

  • Numpy: 1.24.4
  • HDBSCAN: 0.8.33
  • UMAP: 0.5.4
  • Pandas: 2.0.3
  • Scikit-Learn: 1.3.1
  • Sentence-transformers: 2.2.2
  • Transformers: 4.34.1
  • Numba: 0.58.1
  • Plotly: 5.17.0
  • Python: 3.10.12