synergyai-jaeung commited on
Commit
bf22769
1 Parent(s): 51e176d

Model save

Browse files
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - recall
12
+ - precision
13
+ model-index:
14
+ - name: vit-base-patch16-224-in21k_covid_19_ct_scans
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: imagefolder
21
+ type: imagefolder
22
+ config: default
23
+ split: train
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.8466666666666667
29
+ - name: F1
30
+ type: f1
31
+ value: 0.8571428571428571
32
+ - name: Recall
33
+ type: recall
34
+ value: 0.8625
35
+ - name: Precision
36
+ type: precision
37
+ value: 0.8518518518518519
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # vit-base-patch16-224-in21k_covid_19_ct_scans
44
+
45
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.3062
48
+ - Accuracy: 0.8467
49
+ - F1: 0.8571
50
+ - Recall: 0.8625
51
+ - Precision: 0.8519
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 0.0002
71
+ - train_batch_size: 32
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 3
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
81
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
82
+ | 0.6963 | 1.0 | 19 | 0.5246 | 0.76 | 0.7857 | 0.825 | 0.75 |
83
+ | 0.6963 | 2.0 | 38 | 0.3911 | 0.8333 | 0.8322 | 0.775 | 0.8986 |
84
+ | 0.6963 | 3.0 | 57 | 0.3062 | 0.8467 | 0.8571 | 0.8625 | 0.8519 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.41.1
90
+ - Pytorch 2.0.0+cu117
91
+ - Datasets 2.19.1
92
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e799436cafb0e7ad52025debb6f3488bd6fde8204c443d2a8b0ae5224a4531f5
3
  size 343223968
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6ffcaf1f23b10a558e05880f086fff103f80408de51a4c2d1740cc297249b90
3
  size 343223968
runs/May27_18-25-20_RTX3090/events.out.tfevents.1716801933.RTX3090.23176.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:72e180aa0572f29720b79198fad810e71d6d00365c5e4edd426b8ead0c1f2c56
3
- size 5600
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3db9d06e64990a818b11ba024e10dbc51ec071bf6be31ff99adbc795c7021fa9
3
+ size 6874