metadata
license: apache-2.0
base_model: google/byt5-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: byt5-finetuned-indocollex-informal-to-formal
results: []
byt5-finetuned-indocollex-informal-to-formal
This model is a fine-tuned version of google/byt5-small on IndoCollex dataset on informal-formal transformation.
It achieves the following results on the evaluation set:
- Loss: 0.2186
- CER: 0.2292
- WER: 0.6667
- Word Accuracy: 0.3333
- Gen Len: 7.4857
On test set, it achieves following results :
- CER: 0.2655
- WER: 0.666
- Word Accuracy: 0.333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Word Acc | Gen Len |
---|---|---|---|---|---|---|---|
No log | 1.0 | 47 | 45.4518 | 2.1817 | 2.0286 | -1.0286 | 19.0 |
No log | 2.0 | 94 | 34.7405 | 2.2267 | 2.5619 | -1.5619 | 19.0 |
No log | 3.0 | 141 | 26.0483 | 2.2895 | 4.5857 | -3.5857 | 19.0 |
No log | 4.0 | 188 | 17.2640 | 2.399 | 1.3667 | -0.3667 | 19.0 |
No log | 5.0 | 235 | 7.8648 | 2.4949 | 1.0 | 0.0 | 19.0 |
No log | 6.0 | 282 | 5.4635 | 2.4143 | 1.0 | 0.0 | 19.0 |
No log | 7.0 | 329 | 4.8432 | 1.253 | 1.0 | 0.0 | 8.8743 |
No log | 8.0 | 376 | 4.1049 | 1.0 | 1.0 | 0.0 | 0.0 |
No log | 9.0 | 423 | 3.1453 | 0.848 | 1.0 | 0.0 | 7.3371 |
No log | 10.0 | 470 | 2.6065 | 0.8778 | 0.9905 | 0.0095 | 7.3486 |
19.2068 | 11.0 | 517 | 1.6326 | 0.9677 | 1.0 | 0.0 | 9.5143 |
19.2068 | 12.0 | 564 | 0.9833 | 0.7538 | 0.9905 | 0.0095 | 8.4571 |
19.2068 | 13.0 | 611 | 0.6980 | 0.6562 | 0.981 | 0.019 | 7.5543 |
19.2068 | 14.0 | 658 | 0.5709 | 0.5679 | 0.9857 | 0.0143 | 6.9714 |
19.2068 | 15.0 | 705 | 0.4965 | 0.4567 | 0.9571 | 0.0429 | 6.7886 |
19.2068 | 16.0 | 752 | 0.4470 | 0.3413 | 0.9381 | 0.0619 | 6.84 |
19.2068 | 17.0 | 799 | 0.4211 | 0.3175 | 0.9238 | 0.0762 | 6.8514 |
19.2068 | 18.0 | 846 | 0.4036 | 0.3124 | 0.9 | 0.1 | 6.6914 |
19.2068 | 19.0 | 893 | 0.3738 | 0.3031 | 0.9048 | 0.0952 | 6.9429 |
19.2068 | 20.0 | 940 | 0.3604 | 0.309 | 0.8857 | 0.1143 | 6.9086 |
19.2068 | 21.0 | 987 | 0.3489 | 0.3022 | 0.881 | 0.119 | 7.0171 |
0.8827 | 22.0 | 1034 | 0.3320 | 0.2869 | 0.8333 | 0.1667 | 6.9771 |
0.8827 | 23.0 | 1081 | 0.3238 | 0.2861 | 0.8238 | 0.1762 | 6.9257 |
0.8827 | 24.0 | 1128 | 0.3163 | 0.2666 | 0.8143 | 0.1857 | 7.2686 |
0.8827 | 25.0 | 1175 | 0.3139 | 0.2733 | 0.8095 | 0.1905 | 7.2914 |
0.8827 | 26.0 | 1222 | 0.3029 | 0.2716 | 0.8 | 0.2 | 7.36 |
0.8827 | 27.0 | 1269 | 0.2941 | 0.2666 | 0.7905 | 0.2095 | 7.2971 |
0.8827 | 28.0 | 1316 | 0.2905 | 0.2666 | 0.7857 | 0.2143 | 7.2914 |
0.8827 | 29.0 | 1363 | 0.2835 | 0.2615 | 0.7857 | 0.2143 | 7.2686 |
0.8827 | 30.0 | 1410 | 0.2829 | 0.2733 | 0.781 | 0.219 | 7.44 |
0.8827 | 31.0 | 1457 | 0.2762 | 0.2598 | 0.7714 | 0.2286 | 7.3714 |
0.3372 | 32.0 | 1504 | 0.2746 | 0.2725 | 0.7857 | 0.2143 | 7.4571 |
0.3372 | 33.0 | 1551 | 0.2728 | 0.2666 | 0.7714 | 0.2286 | 7.4457 |
0.3372 | 34.0 | 1598 | 0.2650 | 0.2572 | 0.7619 | 0.2381 | 7.3886 |
0.3372 | 35.0 | 1645 | 0.2618 | 0.2708 | 0.7762 | 0.2238 | 7.44 |
0.3372 | 36.0 | 1692 | 0.2579 | 0.2572 | 0.7619 | 0.2381 | 7.3771 |
0.3372 | 37.0 | 1739 | 0.2563 | 0.2496 | 0.7524 | 0.2476 | 7.3371 |
0.3372 | 38.0 | 1786 | 0.2530 | 0.247 | 0.7571 | 0.2429 | 7.3543 |
0.3372 | 39.0 | 1833 | 0.2531 | 0.2504 | 0.7667 | 0.2333 | 7.3657 |
0.3372 | 40.0 | 1880 | 0.2521 | 0.2453 | 0.7476 | 0.2524 | 7.3143 |
0.3372 | 41.0 | 1927 | 0.2496 | 0.2419 | 0.7333 | 0.2667 | 7.2914 |
0.3372 | 42.0 | 1974 | 0.2483 | 0.2411 | 0.7381 | 0.2619 | 7.3143 |
0.2747 | 43.0 | 2021 | 0.2446 | 0.2402 | 0.7381 | 0.2619 | 7.3429 |
0.2747 | 44.0 | 2068 | 0.2443 | 0.2402 | 0.7381 | 0.2619 | 7.32 |
0.2747 | 45.0 | 2115 | 0.2425 | 0.2377 | 0.7381 | 0.2619 | 7.3714 |
0.2747 | 46.0 | 2162 | 0.2406 | 0.2351 | 0.7429 | 0.2571 | 7.3714 |
0.2747 | 47.0 | 2209 | 0.2399 | 0.2402 | 0.7429 | 0.2571 | 7.32 |
0.2747 | 48.0 | 2256 | 0.2383 | 0.2402 | 0.7381 | 0.2619 | 7.3657 |
0.2747 | 49.0 | 2303 | 0.2363 | 0.2377 | 0.7429 | 0.2571 | 7.3257 |
0.2747 | 50.0 | 2350 | 0.2340 | 0.2301 | 0.7143 | 0.2857 | 7.3714 |
0.2747 | 51.0 | 2397 | 0.2347 | 0.2275 | 0.7143 | 0.2857 | 7.3543 |
0.2747 | 52.0 | 2444 | 0.2332 | 0.2275 | 0.7143 | 0.2857 | 7.3714 |
0.2747 | 53.0 | 2491 | 0.2309 | 0.2258 | 0.7095 | 0.2905 | 7.3657 |
0.2411 | 54.0 | 2538 | 0.2309 | 0.225 | 0.7048 | 0.2952 | 7.3714 |
0.2411 | 55.0 | 2585 | 0.2299 | 0.2267 | 0.7048 | 0.2952 | 7.3829 |
0.2411 | 56.0 | 2632 | 0.2280 | 0.2258 | 0.7048 | 0.2952 | 7.4171 |
0.2411 | 57.0 | 2679 | 0.2301 | 0.2233 | 0.6952 | 0.3048 | 7.44 |
0.2411 | 58.0 | 2726 | 0.2287 | 0.2207 | 0.6905 | 0.3095 | 7.44 |
0.2411 | 59.0 | 2773 | 0.2295 | 0.2216 | 0.7 | 0.3 | 7.4171 |
0.2411 | 60.0 | 2820 | 0.2277 | 0.2199 | 0.6952 | 0.3048 | 7.4229 |
0.2411 | 61.0 | 2867 | 0.2267 | 0.2233 | 0.6952 | 0.3048 | 7.4286 |
0.2411 | 62.0 | 2914 | 0.2260 | 0.2233 | 0.7048 | 0.2952 | 7.4343 |
0.2411 | 63.0 | 2961 | 0.2263 | 0.2224 | 0.7048 | 0.2952 | 7.4343 |
0.2193 | 64.0 | 3008 | 0.2262 | 0.2216 | 0.6952 | 0.3048 | 7.4286 |
0.2193 | 65.0 | 3055 | 0.2268 | 0.225 | 0.6952 | 0.3048 | 7.4 |
0.2193 | 66.0 | 3102 | 0.2241 | 0.2207 | 0.6952 | 0.3048 | 7.4114 |
0.2193 | 67.0 | 3149 | 0.2237 | 0.2233 | 0.7 | 0.3 | 7.4286 |
0.2193 | 68.0 | 3196 | 0.2230 | 0.2224 | 0.7 | 0.3 | 7.4229 |
0.2193 | 69.0 | 3243 | 0.2229 | 0.2216 | 0.681 | 0.319 | 7.4286 |
0.2193 | 70.0 | 3290 | 0.2225 | 0.2241 | 0.7 | 0.3 | 7.4286 |
0.2193 | 71.0 | 3337 | 0.2220 | 0.2241 | 0.6905 | 0.3095 | 7.44 |
0.2193 | 72.0 | 3384 | 0.2221 | 0.2241 | 0.6905 | 0.3095 | 7.4286 |
0.2193 | 73.0 | 3431 | 0.2214 | 0.2241 | 0.6905 | 0.3095 | 7.4171 |
0.2193 | 74.0 | 3478 | 0.2215 | 0.2233 | 0.6905 | 0.3095 | 7.4229 |
0.2056 | 75.0 | 3525 | 0.2209 | 0.2267 | 0.6905 | 0.3095 | 7.4457 |
0.2056 | 76.0 | 3572 | 0.2208 | 0.2258 | 0.6905 | 0.3095 | 7.44 |
0.2056 | 77.0 | 3619 | 0.2201 | 0.225 | 0.6905 | 0.3095 | 7.4343 |
0.2056 | 78.0 | 3666 | 0.2205 | 0.2258 | 0.6905 | 0.3095 | 7.4229 |
0.2056 | 79.0 | 3713 | 0.2209 | 0.225 | 0.6905 | 0.3095 | 7.4171 |
0.2056 | 80.0 | 3760 | 0.2203 | 0.2275 | 0.6857 | 0.3143 | 7.4571 |
0.2056 | 81.0 | 3807 | 0.2201 | 0.2275 | 0.6857 | 0.3143 | 7.4571 |
0.2056 | 82.0 | 3854 | 0.2204 | 0.2275 | 0.6857 | 0.3143 | 7.4571 |
0.2056 | 83.0 | 3901 | 0.2203 | 0.2267 | 0.6762 | 0.3238 | 7.4629 |
0.2056 | 84.0 | 3948 | 0.2199 | 0.2267 | 0.6667 | 0.3333 | 7.4743 |
0.2056 | 85.0 | 3995 | 0.2194 | 0.2267 | 0.6667 | 0.3333 | 7.48 |
0.196 | 86.0 | 4042 | 0.2193 | 0.2275 | 0.6667 | 0.3333 | 7.4743 |
0.196 | 87.0 | 4089 | 0.2189 | 0.2284 | 0.6667 | 0.3333 | 7.48 |
0.196 | 88.0 | 4136 | 0.2185 | 0.2275 | 0.6619 | 0.3381 | 7.4971 |
0.196 | 89.0 | 4183 | 0.2188 | 0.225 | 0.6619 | 0.3381 | 7.4914 |
0.196 | 90.0 | 4230 | 0.2185 | 0.2292 | 0.6667 | 0.3333 | 7.4857 |
0.196 | 91.0 | 4277 | 0.2188 | 0.2292 | 0.6667 | 0.3333 | 7.4857 |
0.196 | 92.0 | 4324 | 0.2189 | 0.2284 | 0.6667 | 0.3333 | 7.48 |
0.196 | 93.0 | 4371 | 0.2191 | 0.2258 | 0.6667 | 0.3333 | 7.4743 |
0.196 | 94.0 | 4418 | 0.2190 | 0.2258 | 0.6667 | 0.3333 | 7.4743 |
0.196 | 95.0 | 4465 | 0.2187 | 0.2258 | 0.6667 | 0.3333 | 7.4743 |
0.1901 | 96.0 | 4512 | 0.2186 | 0.2267 | 0.6667 | 0.3333 | 7.48 |
0.1901 | 97.0 | 4559 | 0.2187 | 0.2267 | 0.6667 | 0.3333 | 7.48 |
0.1901 | 98.0 | 4606 | 0.2187 | 0.2267 | 0.6667 | 0.3333 | 7.48 |
0.1901 | 99.0 | 4653 | 0.2186 | 0.2292 | 0.6667 | 0.3333 | 7.4857 |
0.1901 | 100.0 | 4700 | 0.2186 | 0.2292 | 0.6667 | 0.3333 | 7.4857 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3