m-polignano-uniba commited on
Commit
6493b34
1 Parent(s): 17d173a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -48
README.md CHANGED
@@ -43,7 +43,7 @@ wants to provide Italian NLP researchers with an improved model the for Italian
43
 
44
  | Model | HF | EXL2 | GGUF | AWQ |
45
  |-------|-------|-------|-------|-------|
46
- | m-polignano-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA | [Link](https://huggingface.co/m-polignano-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA) | [Link](#) | [Link](#) | [Link](#) |
47
 
48
  <hr>
49
 
@@ -199,52 +199,6 @@ For direct use with `transformers`, you can easily get started with the followin
199
 
200
  ```
201
 
202
- ### Unsloth
203
-
204
- For direct use with `unsloth`, you can easily get started with the following steps.
205
-
206
- - Firstly, you need to install unsloth via the command below with `pip`.
207
- ```bash
208
- pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
209
- pip install --no-deps xformers trl peft accelerate bitsandbytes
210
- ```
211
-
212
- - Initialize and optimize the model before use.
213
- ```python
214
- from unsloth import FastLanguageModel
215
- import torch
216
-
217
- base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA"
218
- model, tokenizer = FastLanguageModel.from_pretrained(
219
- model_name = base_model,
220
- max_seq_length = 8192,
221
- dtype = None,
222
- load_in_4bit = True, # Change to `False` if you don't want to use 4bit quantization.
223
- )
224
- FastLanguageModel.for_inference(model)
225
- ```
226
-
227
- - Right now, you can start using the model directly.
228
- ```python
229
- sys = "Sei un an assistente AI per la lingua Italiana di nome LLaMAntino-3 ANITA " \
230
- "(Advanced Natural-based interaction for the ITAlian language)." \
231
- " Rispondi nella lingua usata per la domanda in modo chiaro, semplice ed esaustivo."
232
-
233
- messages = [
234
- {"role": "system", "content": sys},
235
- {"role": "user", "content": "Chi è Carlo Magno?"}
236
- ]
237
- prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
238
- inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
239
- for k,v in inputs.items():
240
- inputs[k] = v.cuda()
241
- outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.9, temperature=0.6)
242
- results = tokenizer.batch_decode(outputs)[0]
243
- print(results)
244
- ```
245
-
246
-
247
-
248
  <hr>
249
 
250
  ## Evaluation
@@ -264,7 +218,7 @@ Evaluated with lm-evaluation-benchmark-harness for the [**Open Italian LLMs Lead
264
  | Hellaswag_IT | 0.7093 |
265
  | MMLU_IT | 0.5672 |
266
 
267
-
268
 
269
  ## Unsloth
270
 
 
43
 
44
  | Model | HF | EXL2 | GGUF | AWQ |
45
  |-------|-------|-------|-------|-------|
46
+ | m-polignano-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA | [Link](https://huggingface.co/m-polignano-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA) | [Soon](#) | [Soon](#) | [Soon](#) |
47
 
48
  <hr>
49
 
 
199
 
200
  ```
201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
  <hr>
203
 
204
  ## Evaluation
 
218
  | Hellaswag_IT | 0.7093 |
219
  | MMLU_IT | 0.5672 |
220
 
221
+ <hr>
222
 
223
  ## Unsloth
224