AnimatedDiff ControlNet SDXL Example
This document provides a step-by-step guide to setting up and running the animatediff_controlnet_sdxl.py
script from the Hugging Face repository. The script leverages the diffusers-sdxl-controlnet
library to generate animated images using ControlNet and SDXL models.
Prerequisites
Before running the script, ensure you have the necessary dependencies installed. You can install them using the following commands:
System Dependencies
sudo apt-get update && sudo apt-get install git-lfs cbm ffmpeg
Python Dependencies
pip install git+https://huggingface.co/svjack/diffusers-sdxl-controlnet
pip install transformers peft sentencepiece moviepy controlnet_aux
Clone the Repository
git clone https://huggingface.co/svjack/diffusers-sdxl-controlnet
cp diffusers-sdxl-controlnet/girl-pose.gif .
Script Modifications
The script requires some modifications to work correctly. Specifically, you need to comment out certain lines related to LoRA processors:
'''
drop #LoRAAttnProcessor2_0,
#LoRAXFormersAttnProcessor,
'''
GIF to Frames Conversion
The script includes a function to convert a GIF into individual frames. This is useful for preparing input data for the animation pipeline.
from PIL import Image, ImageSequence
import os
def gif_to_frames(gif_path, output_folder):
# Open the GIF file
gif = Image.open(gif_path)
# Ensure the output folder exists
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# Iterate through each frame of the GIF
for i, frame in enumerate(ImageSequence.Iterator(gif)):
# Copy the frame
frame_copy = frame.copy()
# Save the frame to the specified folder
frame_path = os.path.join(output_folder, f"frame_{i:04d}.png")
frame_copy.save(frame_path)
print(f"Successfully extracted {i + 1} frames to {output_folder}")
# Example call
gif_to_frames("girl-pose.gif", "girl_pose_frames")
Use this girl pose as pose source video (gif)
Running the Script
To run the script, follow these steps:
Add the Script Path to System Path:
import sys sys.path.insert(0, "diffusers-sdxl-controlnet/examples/community/") from animatediff_controlnet_sdxl import * from controlnet_aux.processor import Processor
Load Necessary Libraries and Models:
import torch from diffusers.models import MotionAdapter from diffusers import DDIMScheduler from diffusers.utils import export_to_gif from diffusers import AutoPipelineForText2Image, ControlNetModel from diffusers.utils import load_image from PIL import Image
Load the MotionAdapter Model:
adapter = MotionAdapter.from_pretrained( "a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16 )
Configure the Scheduler and ControlNet:
model_id = "svjack/GenshinImpact_XL_Base" scheduler = DDIMScheduler.from_pretrained( model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1, ) controlnet = ControlNetModel.from_pretrained( "thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16, ).to("cuda")
Load the AnimateDiffSDXLControlnetPipeline:
pipe = AnimateDiffSDXLControlnetPipeline.from_pretrained( model_id, controlnet=controlnet, motion_adapter=adapter, scheduler=scheduler, torch_dtype=torch.float16, ).to("cuda")
Enable Memory Saving Features:
pipe.enable_vae_slicing() pipe.enable_vae_tiling()
Load Conditioning Frames:
import os folder_path = "girl_pose_frames/" frames = os.listdir(folder_path) frames = list(filter(lambda x: x.endswith(".png"), frames)) frames.sort() conditioning_frames = list(map(lambda x: Image.open(os.path.join(folder_path ,x)).resize((1024, 1024)), frames))[:16]
Process Conditioning Frames:
p2 = Processor("openpose") cn2 = [p2(frame) for frame in conditioning_frames]
Define Prompts:
prompt = ''' solo,Xiangling\(genshin impact\),1girl, full body professional photograph of a stunning detailed, sharp focus, dramatic cinematic lighting, octane render unreal engine (film grain, blurry background ''' prompt = "solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed" negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
Generate Output: (Use Genshin Impact character Xiangling)
prompt = ''' solo,Xiangling\(genshin impact\),1girl, full body professional photograph of a stunning detailed, sharp focus, dramatic cinematic lighting, octane render unreal engine (film grain, blurry background ''' prompt = "solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed" #prompt = "solo,Xiangling\(genshin impact\),1girl" negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly" generator = torch.Generator(device="cpu").manual_seed(0) output = pipe( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=50, guidance_scale=20, controlnet_conditioning_scale = 1.0, width=512, height=768, num_frames=16, conditioning_frames=cn2, generator = generator )
Export Frames to GIF:
frames = output.frames[0] export_to_gif(frames, "xiangling_animation.gif")
Display the Result:
from IPython import display display.Image("xiangling_animation.gif")
Target gif
Conclusion
This script demonstrates how to use the diffusers-sdxl-controlnet
library to generate animated images with ControlNet and SDXL models. By following the steps outlined above, you can create and visualize your own animated sequences.