|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-news-summary-kaggle |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-news-summary-kaggle |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6907 |
|
- Rouge1: 26.6547 |
|
- Rouge2: 10.1 |
|
- Rougel: 24.0137 |
|
- Rougelsum: 23.9999 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| No log | 1.0 | 220 | 3.9956 | 14.9021 | 3.3744 | 13.4763 | 13.499 | |
|
| 8.3183 | 2.0 | 440 | 3.1550 | 17.9472 | 5.9671 | 16.6974 | 16.6959 | |
|
| 8.3183 | 3.0 | 660 | 2.8950 | 21.2665 | 7.4266 | 19.5041 | 19.4837 | |
|
| 4.0457 | 4.0 | 880 | 2.8087 | 25.063 | 9.4484 | 22.746 | 22.7351 | |
|
| 4.0457 | 5.0 | 1100 | 2.7375 | 25.5269 | 9.4299 | 23.0623 | 23.0075 | |
|
| 3.6505 | 6.0 | 1320 | 2.7091 | 25.8308 | 9.3392 | 23.2001 | 23.1586 | |
|
| 3.6505 | 7.0 | 1540 | 2.6949 | 26.2177 | 9.8536 | 23.5946 | 23.6358 | |
|
| 3.5175 | 8.0 | 1760 | 2.6907 | 26.6547 | 10.1 | 24.0137 | 23.9999 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|