Dehnes commited on
Commit
898c4a2
1 Parent(s): ed11a37

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -21
README.md CHANGED
@@ -33,13 +33,15 @@ This model was trained on the basis of the German BERT large model from [deepset
33
 
34
  For this purpose, we translated the sentence pairs in these dataset to German.
35
 
 
 
36
  ### Model Details
37
 
38
  | | Description or Link |
39
  |---|---|
40
  |**Base model** | [```gbert-large```](https://huggingface.co/deepset/gbert-large) |
41
  |**Finetuning task**| Text Pair Classification / Natural Language Inference |
42
- |**Source dataset**| [```mnli```](https://huggingface.co/datasets/multi_nli) ; [```anli```](https://huggingface.co/datasets/anli) ; [```snli```](https://huggingface.co/datasets/snli) |
43
 
44
  ### Performance
45
 
@@ -63,6 +65,30 @@ The next table shows the results as well as a comparison with other German langu
63
  | deepset/gbert-base | 0.65 |
64
 
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  ## Other Applications
67
 
68
 
@@ -88,23 +114,6 @@ label: "Furcht, Freude, Wut , Überraschung, Traurigkeit, Ekel, Verachtung"
88
 
89
  """"""""
90
 
91
-
92
-
93
- ```python
94
-
95
- from transformers import pipeline
96
-
97
- classifier = pipeline("zero-shot-classification",
98
-
99
- model="Dehnes/zeroshot_gbert")
100
-
101
- sequence = "Ich habe ein Problem mit meinem Iphone das so schnell wie möglich gelöst werden muss"
102
-
103
- candidate_labels = ["Computer", "Handy", "Tablet", "dringend", "nicht dringend"]
104
-
105
- #hypothesis_template = "In diesem Satz geht es um das Thema {}." ## Since monolingual model,its sensitive to hypothesis template. This can be experimented
106
- #hypothesis_template = "Dieser Satz drückt ein Gefühl von {} aus."
107
-
108
- classifier(sequence, candidate_labels, hypothesis_template=hypothesis_template)
109
-
110
- ```
 
33
 
34
  For this purpose, we translated the sentence pairs in these dataset to German.
35
 
36
+ If you are a German speaker you may also have a look at our Blog post about Zeroshot Classification and our model.
37
+
38
  ### Model Details
39
 
40
  | | Description or Link |
41
  |---|---|
42
  |**Base model** | [```gbert-large```](https://huggingface.co/deepset/gbert-large) |
43
  |**Finetuning task**| Text Pair Classification / Natural Language Inference |
44
+ |**Source datasets**| [```mnli```](https://huggingface.co/datasets/multi_nli) ; [```anli```](https://huggingface.co/datasets/anli) ; [```snli```](https://huggingface.co/datasets/snli) |
45
 
46
  ### Performance
47
 
 
65
  | deepset/gbert-base | 0.65 |
66
 
67
 
68
+ ## How to use
69
+
70
+ The simplest way to use the model is the hugging-face transformers pipeline tool.
71
+ Just initialize the pipeline specifying the task as "zero-shot-classification"
72
+
73
+ ```python
74
+
75
+ from transformers import pipeline
76
+
77
+ zershot_pipeline = pipeline("zero-shot-classification",
78
+
79
+ model="svalabs/gbert-large-zeroshot-nli")
80
+
81
+ sequence = "Ich habe ein Problem mit meinem Iphone das so schnell wie möglich gelöst werden muss"
82
+
83
+ labels = ["Computer", "Handy", "Tablet", "dringend", "nicht dringend"]
84
+
85
+ #hypothesis_template = "In diesem Satz geht es um das Thema {}." ## Since monolingual model,its sensitive to hypothesis template. This can be experimented
86
+ #hypothesis_template = "Dieser Satz drückt ein Gefühl von {} aus."
87
+
88
+ zershot_pipeline(sequence, labels, hypothesis_template=hypothesis_template)
89
+
90
+ ```
91
+
92
  ## Other Applications
93
 
94
 
 
114
 
115
  """"""""
116
 
117
+ ### Contact
118
+ - Daniel Ehnes, daniel.ehnes@sva.de
119
+ - Baran Avinc, baran.avinc@sva.de