Dehnes commited on
Commit
8475e38
1 Parent(s): 86e8164

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -31
README.md CHANGED
@@ -30,9 +30,7 @@ widget:
30
 
31
  In this repository, we present our german zeroshot model.
32
 
33
- This model was trained on the basis of the German BERT large model from [deepset.ai](https://huggingface.co/deepset/gbert-large) and finetuned for natural language inference based on 847.862 machine-translated nli sentence pairs, using the [mnli](https://huggingface.co/datasets/multi_nli), [anli](https://huggingface.co/datasets/anli) and [snli](https://huggingface.co/datasets/snli) datasets.
34
-
35
- For this purpose, we translated the sentence pairs in these dataset to German.
36
 
37
  If you are a German speaker you may also have a look at our Blog post about Zeroshot Classification and our model.
38
 
@@ -76,7 +74,11 @@ The model requires you to specify labels (ideally labels suited to your task),
76
  a sequence (or list of sequences) to classify and a hypothesis template.
77
  In our tests, if the labels comprise only single words,
78
  "In diesem Satz geht es um das Thema {}" performed the best.
79
-
 
 
 
 
80
 
81
  ```python
82
 
@@ -90,38 +92,12 @@ sequence = "Ich habe ein Problem mit meinem Iphone das so schnell wie möglich g
90
 
91
  labels = ["Computer", "Handy", "Tablet", "dringend", "nicht dringend"]
92
 
93
- #hypothesis_template = "In diesem Satz geht es um das Thema {}." ## Since monolingual model,its sensitive to hypothesis template. This can be experimented
94
- #hypothesis_template = "Dieser Satz drückt ein Gefühl von {} aus."
95
 
96
  zershot_pipeline(sequence, labels, hypothesis_template=hypothesis_template)
97
 
98
  ```
99
 
100
- ## Other Applications
101
-
102
-
103
-
104
- DESCRIPTION GOES HERE:
105
- Satz 1:
106
- "Ich habe ein Problem mit meinem Iphone das so schnell wie möglich gelöst werden muss"
107
- Satz 2:
108
- "Ich hab ein kleines Problem mit meinem Macbook, und auch wenn die Reparatur nicht eilt, würde ich es gerne addressieren."
109
- Label:
110
- ["Computer", "Handy", "Tablet", "dringend", "nicht dringend"]
111
-
112
- EMOTION EXAMPLE:
113
- "Ich bin entäuscht, dass ich kein Ticket für das Konzert meiner Lieblingsband bekommen habe."
114
- label: "Furcht, Freude, Wut , Überraschung, Traurigkeit, Ekel, Verachtung"
115
-
116
-
117
- - text: "Wer ist die reichste Person der Welt"
118
-
119
- candidate_labels: "Frage, Schlagwörter"
120
-
121
- hypothesis_template: "Hierbei handelt es sich um {}."
122
-
123
- """"""""
124
-
125
  ### Contact
126
  - Daniel Ehnes, daniel.ehnes@sva.de
127
  - Baran Avinc, baran.avinc@sva.de
 
30
 
31
  In this repository, we present our german zeroshot model.
32
 
33
+ This model was trained on the basis of the German BERT large model from [deepset.ai](https://huggingface.co/deepset/gbert-large) and finetuned for natural language inference based on 847.862 machine-translated nli sentence pairs, using the [mnli](https://huggingface.co/datasets/multi_nli), [anli](https://huggingface.co/datasets/anli) and [snli](https://huggingface.co/datasets/snli) datasets. For this purpose, we translated the sentence pairs in these dataset to German.
 
 
34
 
35
  If you are a German speaker you may also have a look at our Blog post about Zeroshot Classification and our model.
36
 
 
74
  a sequence (or list of sequences) to classify and a hypothesis template.
75
  In our tests, if the labels comprise only single words,
76
  "In diesem Satz geht es um das Thema {}" performed the best.
77
+
78
+ However, for multiple words, especially when they combine nouns and verbs,
79
+ Simple hypothesis such as "Weil" or "Daher" may perform better.
80
+
81
+ Here is an example of how to use the model:
82
 
83
  ```python
84
 
 
92
 
93
  labels = ["Computer", "Handy", "Tablet", "dringend", "nicht dringend"]
94
 
95
+ hypothesis_template = "In diesem Satz geht es um das Thema {}."
 
96
 
97
  zershot_pipeline(sequence, labels, hypothesis_template=hypothesis_template)
98
 
99
  ```
100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  ### Contact
102
  - Daniel Ehnes, daniel.ehnes@sva.de
103
  - Baran Avinc, baran.avinc@sva.de