shenbinqian's picture
Update README.md
dceb610 verified
|
raw
history blame
3.91 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-large-finetuned-abbr-filtered-plod
    results: []
language:
  - en

roberta-large-finetuned-abbr-filtered-plod

This model is a fine-tuned version of the roberta-large on the PLODv2 filtered dataset. It is released with our LREC-COLING 2024 publication (coming soon). It achieves the following results on the test set:

Results on abbreviations:

  • Precision: 0.9073
  • Recall: 0.9348
  • F1: 0.9208

Results on long forms:

  • Precision: 0.8908
  • Recall: 0.9318
  • F1: 0.9108

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1169 0.25 7000 0.1114 0.9639 0.9581 0.9610 0.9575
0.1171 0.5 14000 0.1150 0.9655 0.9534 0.9594 0.9554
0.1202 0.75 21000 0.1058 0.9644 0.9578 0.9611 0.9575
0.1105 0.99 28000 0.1098 0.9664 0.9549 0.9606 0.9566
0.0935 1.24 35000 0.1270 0.9643 0.9570 0.9606 0.9570
0.0999 1.49 42000 0.1112 0.9626 0.9605 0.9615 0.9580
0.0948 1.74 49000 0.1114 0.9670 0.9606 0.9638 0.9603
0.1015 1.99 56000 0.1146 0.9680 0.9589 0.9634 0.9597
0.0816 2.24 63000 0.1244 0.9670 0.9607 0.9638 0.9603
0.0855 2.49 70000 0.1107 0.9675 0.9623 0.9649 0.9614
0.0814 2.73 77000 0.1047 0.9661 0.9630 0.9645 0.9611
0.0827 2.98 84000 0.1082 0.9665 0.9631 0.9648 0.9614
0.0655 3.23 91000 0.1485 0.9690 0.9615 0.9653 0.9618
0.0631 3.48 98000 0.1314 0.9683 0.9639 0.9661 0.9627
0.0667 3.73 105000 0.1164 0.9683 0.9643 0.9663 0.9629
0.0652 3.98 112000 0.1297 0.9681 0.9653 0.9667 0.9633
0.0485 4.23 119000 0.1441 0.9697 0.9645 0.9671 0.9636
0.0505 4.47 126000 0.1350 0.9700 0.9651 0.9675 0.9642
0.0498 4.72 133000 0.1243 0.9691 0.9657 0.9674 0.9640
0.0463 4.97 140000 0.1392 0.9699 0.9660 0.9679 0.9645
0.0371 5.22 147000 0.1527 0.9709 0.9658 0.9683 0.9649
0.0363 5.47 154000 0.1490 0.9703 0.9667 0.9685 0.9651
0.0341 5.72 161000 0.1538 0.9712 0.9666 0.9689 0.9656
0.0338 5.97 168000 0.1488 0.9705 0.9668 0.9687 0.9653

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.10.3