anonymous-model-1 / rotary_position_embedding.py
superdocker's picture
Upload model
2fc4a43 verified
# coding=utf-8
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from einops import rearrange
from torch import einsum, nn
__all__ = ['RotaryEmbedding', 'apply_rotary_pos_emb']
class RotaryEmbedding(nn.Module):
"""
Implements Rotary Position Embedding from https://arxiv.org/abs/2104.09864.
"""
def __init__(
self, dim: int, seq_len_interpolation_factor: int = None, pretrained_max_position_embeddings: int = None
):
"""
Args:
dim (int): rotary embedding dimension
seq_len_interpolation_factor (int): if not None, discrete positions will be interpolated
by this factor via the trick in https://arxiv.org/abs/2306.15595.
pretrained_max_position_embeddings (int): pre-trained max_position_embeddings before position interpolation.
"""
super().__init__()
self.seq_len_interpolation_factor = seq_len_interpolation_factor
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
self.pretrained_max_position_embeddings = pretrained_max_position_embeddings
def forward(self, max_seq_len, offset=0):
seq = torch.arange(max_seq_len, device=self.inv_freq.device) + offset
seq = seq.type_as(self.inv_freq)
if self.pretrained_max_position_embeddings is not None and self.seq_len_interpolation_factor is not None:
if max_seq_len > self.pretrained_max_position_embeddings * self.seq_len_interpolation_factor:
# dynamic linear scaling (length > position we have learned)
seq *= 1 / (max_seq_len / self.pretrained_max_position_embeddings)
else:
# fixed linear scaling
seq *= 1 / self.seq_len_interpolation_factor
freqs = einsum('i , j -> i j', seq, self.inv_freq)
# first part even vector components, second part odd vector components,
# 2 * dim in dimension size
emb = torch.cat((freqs, freqs), dim=-1)
# emb [seq_length, .., dim]
return rearrange(emb, 'n d -> n 1 1 d')
def _rotate_half(x):
"""
change sign so the last dimension
[A, B, C, D] -> [-C, -D, A, B]
"""
x = rearrange(x, '... (j d) -> ... j d', j=2)
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(t, freqs):
"""
input tensor t is of shape [seq_length, ..., dim]
rotary positional embeding tensor freqs is of shape [seq_length, ..., dim]
check https://kexue.fm/archives/8265 for detailed formulas
"""
# Changes from the original RoPE implementation
# 1. The original NeMo implementation assumes the input tensor of shape
# [seq_length, ..., dim], but the HF layout is [..., seq_length, dim].
# Thus freqs needs to be viewed as [..., seq_length, dim].
freqs = freqs.permute(1, 2, 0, 3)
# 2. Support for queries which past tokens are truncated
assert freqs.shape[-2] >= t.shape[-2]
if freqs.shape[-2] != t.shape[-2]:
freqs = freqs[:, :, -t.shape[-2]:, :]
rot_dim = freqs.shape[-1]
# ideally t_pass is empty so rotary pos embedding is applied to all tensor t
t, t_pass = t[..., :rot_dim], t[..., rot_dim:]
# first part is cosine component
# second part is sine component, need to change signs with _rotate_half method
t = (t * freqs.cos()) + (_rotate_half(t) * freqs.sin())
return torch.cat((t, t_pass), dim=-1)