super-cinnamon's picture
Push model using huggingface_hub.
b2bafa7
|
raw
history blame
10.5 kB
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: >-
      Quels sont les recours possibles en cas de conflit entre un employeur et
      un employé ?
  - text: Comment déclarer mes impôts et taxes ?
  - text: Quelles sont les règles de tenue de la comptabilité ?
  - text: Quels sont les frais associés à cette procédure ?
  - text: >-
      Quelles sont les procédures de recours possibles contre une décision
      administrative ?
pipeline_tag: text-classification
inference: true
base_model: intfloat/multilingual-e5-small
model-index:
  - name: SetFit with intfloat/multilingual-e5-small
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.9473684210526315
            name: Accuracy

SetFit with intfloat/multilingual-e5-small

This is a SetFit model that can be used for Text Classification. This SetFit model uses intfloat/multilingual-e5-small as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
follow_up
  • 'Quels sont les régimes matrimoniaux possibles ?'
  • 'Quelles sont les conséquences économiques ou sociales de cette loi ?'
  • "Est-ce que cette loi s'applique à mon cas particulier ?"
independent
  • 'Quelles sont les règles en matière de temps de travail et de congés ?'
  • "Quels sont les types de structures d'entreprise autorisés en Algérie ?"
  • 'Quels sont les droits et obligations des travailleurs en Algérie ?'

Evaluation

Metrics

Label Accuracy
all 0.9474

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("super-cinnamon/fewshot-followup-multi-e5")
# Run inference
preds = model("Comment déclarer mes impôts et taxes ?")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 9.76 16
Label Training Sample Count
independent 39
follow_up 36

Training Hyperparameters

  • batch_size: (8, 8)
  • num_epochs: (10, 10)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0028 1 0.3779 -
0.1381 50 0.3395 -
0.2762 100 0.1385 -
0.4144 150 0.1179 -
0.5525 200 0.0172 -
0.6906 250 0.0006 -
0.8287 300 0.0014 -
0.9669 350 0.0004 -
1.1050 400 0.0002 -
1.2431 450 0.0002 -
1.3812 500 0.0002 -
1.5193 550 0.0005 -
1.6575 600 0.0001 -
1.7956 650 0.0001 -
1.9337 700 0.0001 -
2.0718 750 0.0002 -
2.2099 800 0.0001 -
2.3481 850 0.0002 -
2.4862 900 0.0003 -
2.6243 950 0.0001 -
2.7624 1000 0.0001 -
2.9006 1050 0.0001 -
3.0387 1100 0.0 -
3.1768 1150 0.0001 -
3.3149 1200 0.0001 -
3.4530 1250 0.0001 -
3.5912 1300 0.0001 -
3.7293 1350 0.0 -
3.8674 1400 0.0001 -
4.0055 1450 0.0001 -
4.1436 1500 0.0001 -
4.2818 1550 0.0002 -
4.4199 1600 0.0001 -
4.5580 1650 0.0001 -
4.6961 1700 0.0002 -
4.8343 1750 0.0 -
4.9724 1800 0.0001 -
5.1105 1850 0.0 -
5.2486 1900 0.0001 -
5.3867 1950 0.0 -
5.5249 2000 0.0 -
5.6630 2050 0.0001 -
5.8011 2100 0.0 -
5.9392 2150 0.0 -
6.0773 2200 0.0001 -
6.2155 2250 0.0001 -
6.3536 2300 0.0001 -
6.4917 2350 0.0 -
6.6298 2400 0.0 -
6.7680 2450 0.0 -
6.9061 2500 0.0 -
7.0442 2550 0.0 -
7.1823 2600 0.0001 -
7.3204 2650 0.0 -
7.4586 2700 0.0 -
7.5967 2750 0.0001 -
7.7348 2800 0.0 -
7.8729 2850 0.0001 -
8.0110 2900 0.0 -
8.1492 2950 0.0 -
8.2873 3000 0.0 -
8.4254 3050 0.0 -
8.5635 3100 0.0001 -
8.7017 3150 0.0 -
8.8398 3200 0.0001 -
8.9779 3250 0.0 -
9.1160 3300 0.0 -
9.2541 3350 0.0 -
9.3923 3400 0.0 -
9.5304 3450 0.0 -
9.6685 3500 0.0 -
9.8066 3550 0.0 -
9.9448 3600 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu118
  • Datasets: 2.15.0
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}