metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
Quels sont les recours possibles en cas de conflit entre un employeur et
un employé ?
- text: Comment déclarer mes impôts et taxes ?
- text: Quelles sont les règles de tenue de la comptabilité ?
- text: Quels sont les frais associés à cette procédure ?
- text: >-
Quelles sont les procédures de recours possibles contre une décision
administrative ?
pipeline_tag: text-classification
inference: true
base_model: intfloat/multilingual-e5-small
model-index:
- name: SetFit with intfloat/multilingual-e5-small
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9473684210526315
name: Accuracy
SetFit with intfloat/multilingual-e5-small
This is a SetFit model that can be used for Text Classification. This SetFit model uses intfloat/multilingual-e5-small as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: intfloat/multilingual-e5-small
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
follow_up |
|
independent |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9474 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("super-cinnamon/fewshot-followup-multi-e5")
# Run inference
preds = model("Comment déclarer mes impôts et taxes ?")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 9.76 | 16 |
Label | Training Sample Count |
---|---|
independent | 39 |
follow_up | 36 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0028 | 1 | 0.3779 | - |
0.1381 | 50 | 0.3395 | - |
0.2762 | 100 | 0.1385 | - |
0.4144 | 150 | 0.1179 | - |
0.5525 | 200 | 0.0172 | - |
0.6906 | 250 | 0.0006 | - |
0.8287 | 300 | 0.0014 | - |
0.9669 | 350 | 0.0004 | - |
1.1050 | 400 | 0.0002 | - |
1.2431 | 450 | 0.0002 | - |
1.3812 | 500 | 0.0002 | - |
1.5193 | 550 | 0.0005 | - |
1.6575 | 600 | 0.0001 | - |
1.7956 | 650 | 0.0001 | - |
1.9337 | 700 | 0.0001 | - |
2.0718 | 750 | 0.0002 | - |
2.2099 | 800 | 0.0001 | - |
2.3481 | 850 | 0.0002 | - |
2.4862 | 900 | 0.0003 | - |
2.6243 | 950 | 0.0001 | - |
2.7624 | 1000 | 0.0001 | - |
2.9006 | 1050 | 0.0001 | - |
3.0387 | 1100 | 0.0 | - |
3.1768 | 1150 | 0.0001 | - |
3.3149 | 1200 | 0.0001 | - |
3.4530 | 1250 | 0.0001 | - |
3.5912 | 1300 | 0.0001 | - |
3.7293 | 1350 | 0.0 | - |
3.8674 | 1400 | 0.0001 | - |
4.0055 | 1450 | 0.0001 | - |
4.1436 | 1500 | 0.0001 | - |
4.2818 | 1550 | 0.0002 | - |
4.4199 | 1600 | 0.0001 | - |
4.5580 | 1650 | 0.0001 | - |
4.6961 | 1700 | 0.0002 | - |
4.8343 | 1750 | 0.0 | - |
4.9724 | 1800 | 0.0001 | - |
5.1105 | 1850 | 0.0 | - |
5.2486 | 1900 | 0.0001 | - |
5.3867 | 1950 | 0.0 | - |
5.5249 | 2000 | 0.0 | - |
5.6630 | 2050 | 0.0001 | - |
5.8011 | 2100 | 0.0 | - |
5.9392 | 2150 | 0.0 | - |
6.0773 | 2200 | 0.0001 | - |
6.2155 | 2250 | 0.0001 | - |
6.3536 | 2300 | 0.0001 | - |
6.4917 | 2350 | 0.0 | - |
6.6298 | 2400 | 0.0 | - |
6.7680 | 2450 | 0.0 | - |
6.9061 | 2500 | 0.0 | - |
7.0442 | 2550 | 0.0 | - |
7.1823 | 2600 | 0.0001 | - |
7.3204 | 2650 | 0.0 | - |
7.4586 | 2700 | 0.0 | - |
7.5967 | 2750 | 0.0001 | - |
7.7348 | 2800 | 0.0 | - |
7.8729 | 2850 | 0.0001 | - |
8.0110 | 2900 | 0.0 | - |
8.1492 | 2950 | 0.0 | - |
8.2873 | 3000 | 0.0 | - |
8.4254 | 3050 | 0.0 | - |
8.5635 | 3100 | 0.0001 | - |
8.7017 | 3150 | 0.0 | - |
8.8398 | 3200 | 0.0001 | - |
8.9779 | 3250 | 0.0 | - |
9.1160 | 3300 | 0.0 | - |
9.2541 | 3350 | 0.0 | - |
9.3923 | 3400 | 0.0 | - |
9.5304 | 3450 | 0.0 | - |
9.6685 | 3500 | 0.0 | - |
9.8066 | 3550 | 0.0 | - |
9.9448 | 3600 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu118
- Datasets: 2.15.0
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}